
  

  

Abstract—Ill-conditioning is serious problem in SENSE 
reconstruction, especially when large acceleration factors are 
employed. For Cartesian SENSE, Tikhonov regularization and 
total variation have been commonly used. However, the 
Tikhonov regularized image usually tends to blur edges and 
total variation regularization has a blocky effect. In this paper, 
we propose a new SENSE regularization technique that is based 
on nonlocal total variation with Bregman iteration. It penalizes 
highly oscillatory noise and allows sharp edges and fine textures 
in reconstruction. The method is shown to be able to 
significantly reduce the artifacts in SENSE reconstruction. 
 
 
Index Terms- SENSE, nonlocal total variation regularization, 
Bregman iteration 
 

I. INTRODUCTION 
arallel MRI improves imaging speed by reducing the 
number of samples simultaneously acquired from 
multiple channels. Standard reconstruction methods 

include SENSE, SMASH, GRAPPA, etc. [1-3]. Among them, 
SENSE (SENSitivity Encoding) [1] is known to theoretically 
be able to give the exact reconstruction of the imaged object 
in the absence of noise. However, in practice, a well-known 
problem of SENSE is the amplification of data noise due to 
the ill-conditioned nature of the inverse problem. And it is 
especially serious when a high reduction factor is employed. 
General solutions include optimization of the coil geometry 
[4,5] and application of mathematical regularizations to 
reconstruction [6-8]. Two common choices for regularization 
are Tikhonov regularization [6-8] primarily due to the 
existence of a closed-form solution, and total variation (TV) 
regularization with edge-preserving property [9-10]. The 
regularization image, usually of poor quality (e.g. low 
resolution), introduces bias in Tikhonov regularization, which 
is seen as imparted image blurring, or residual aliasing 
artifacts at high reduction factors. TV regularization replaces 
the smoothness prior in Tikhonov regularization by an edge 
preserving prior that imposes equal-weight relationship 
between local neighboring pixels. A drawback of TV 
regularization is the possible loss of fine structures and 
textures. It is due to the limitation that the cost function of TV 
regularization is based solely on derivatives which are local 
features of the image.   

Recently, nonlocal TV regularization attracts a lot of 
attention due to allowing much more flexibility in the 
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regularization. The nonlocal TV energy was proposed by 
Gilboa et al. [11] in the continuous setting. It is used in the 
discrete setting in order to perform denoising [12-13] and 
inverse problem [14-15].   

This regularization prior is described as non-local since 
pixels belonging to the whole image are used when 
calculating the gradient, instead of only the nearest pixels as 
used in TV regularization. In addition, when calculating the 
gradient there is a weighted graph between the current pixel 
and all pixels. With the addition of Bregman iteration, the 
nonlocal TV regularization has been shown superior 
performance than TV regularization on denoising and inverse 
problem. [12-15]. In this paper, we apply nonlocal TV 
regularization to SENSE reconstruction and demonstrate its 
superior performance to other competing regularization 
methods. 

II. TIKHONOV AND TV REGULARIZATION ON SENSE 
Parallel MRI [1-3] is a new technique to improve on 

conventional Fourier encoding for fast imaging. In parallel 
imaging, k-space data are acquired from multiple channels 
simultaneously such that they can be sampled with a rate 
lower than the Nyquist sampling rate. The imaging equation 
for SENSE can be written in matrix form as  
                                     =Ef d                                          (1) 

where d is a concatenation of data  from all channels, and f  
the desired image to be reconstructed with length n. E is the 
sensitivity encoding matrix comprising Fourier encoding and 
sensitivity weighting. The image f can be reconstructed by the 
least-squares solution to Eq. (1). 

                          ( ) 11 1H H−− −=f E Ψ E E Ψ d                     (2) 
where the superscript H indicates transposed complex 
conjugate, Ψ  is the receiver noise covariance [1]. 

When the linear equation in Eq. (1) is ill-conditioned, the 
data noise can be amplified which leads to poor 
reconstruction. Tikhonov and TV regularization have been 
used to address the ill-conditioning problem. In Tikhonov 
framework, the reconstruction is given by: 

{ }2 2
reg 2 2

arg min ( )rλ= − + −
f

f d Ef A f f         (3) 

where the regularization parameter λ  is chosen to balance 
the data fitting error and the penalty (or regularization) term, 
which is formed from the difference between the expected 
solution and the prior image rf  known as the regularization 
image. A closed-form solution for regf  exists and is given by 

          ( ) ( )11 1H H H
r rλ

−− −= + + −regf f E Ψ E A A E Ψ d Ef     (4) 
The Tikhonov regularized reconstruction usually suffers 

from blurring effects due to L2 norm in Eq. (4). To alleviate 
the problem, a low-resolution image generated from several 
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additional lines acquired at the center of the k-space is used as 
the regularization image rf , but at an expense of prolonged 
imaging time. Due to the low quality of this regularization 
image, the reconstruction still suffers from aliasing artifacts at 
high reduction factor R. 

TV regularization has been proved to be able to recover 
piecewise smooth functions without smoothing sharp 
discontinuities. The reconstructed image using TV 
regularization is given by 

   
{ }reg 2 TV

arg min λ= − +
f

f d Ef f                     (5) 

where the regularization term is TV norm of the image 
defined as  

           
22

TV ||| || f f−= ∇ + ∇∑f                            (6) 

−∇  and |∇  denote the gradient along horizontal and vertical 
directions respectively [16], and | · | denotes the complex 
modulus. The TV prior is based on the fact that the highly 
oscillatory noise usually increases the TV of an image [17]. 
TV regularization is known to be edge-preserving, but may 
result in loss of texture due to the assumption that the image 
TV is small [16]. The detail textures usually have large local 
variations, which lead to increased TV value. As a result, the 
minimization of Eq.(5) with TV regularization reduces fine 
structures at the same time when suppressing noise in 
reconstruction.  

III. PROPOSED REGULARIZATION METHOD  
In order to utilize the benefit of TV regularization with 
edge-preserving and overcome the blocky effect, the 
nonlocal TV regularization is applied to SENSE. Then the 
reconstructed image is given by 

                  { }2arg min λ= − +reg NLTVf
f d Ef f ,                  (7) 

2

w
x

x

= ∇∑NLTV
f f is the L1 norm of L2 norm of the weighted 

graph gradient w
x∇ f across all image pixels. The weighted 

graph gradient is defined as [14-15]:  

                 ( ) ( ) ( )( )( ), nw
x

y
w x y y x∇ = − ∈f f f \            (8) 

For a given pixel x, this operator defines a gradient vector. Its 

adjoint operator is the divergence operator ( )Tw wdiv = ∇ . For 

a gradient field n
xF ∈\ , the divergence is  

           ( )( ) ( ) ( ) ( ) ( )( ),w
x y

y
div F x w x y F y F x= −∑        (9) 

Here, ( ),w x y  is an adapted graph calculated for a given 
image so that the regularization by nonlocal TV can 
efficiently removes noise without destroying the salient 
features of the image. �
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where ( ),x y
Z w x y=∑ is the normalization constant. The 

parameter 0δ >  restricts the non-locality of the method and 
also allows to speed-up computation. The parameter σ  
controls how many patch are taken into account to perform 
the averaging. This parameter is difficult to set and ideally it 
should also be adapted to the noise level. In our work, we use 
the method proposed in ref [18] to estimate this parameter. 
Basically, after SENSE reconstruction without regularization, 
the noise level is estimated as the median absolute deviation 
of the wavelet coefficients at the finest scale divided by 
.6745.  

Please note this nonlocal graph is constructed by 
comparing patches around each pixel. A patch ( )xp f  of size 
m × m (m being an odd integer) around a pixel position x is 

                
( ) ( ){ }

( ) ( ) ( )

2
1 2 1, , 1 2

x

t m m

p f t f x t

∀ ∈ − − + −

= +

…
                 (11) 

Here, a patch ( )xp f  is cascaded as a one dimensional vector 

of size 2m and t is the index. 
Compared with the definition of TV in Eq. (6), it is clear 

that all pixels are used in nonlocal TV. In order to reduce the 
computation time in practice, the seek of the neighborhood is 
limited to a window search around the pixel to be estimated. 
Even in this case, the number of used pixels is still larger than 
TV norm which usually use the nearest pixels only. In 
addition, weights are different between different pair of 
pixels.  

To further recover the fine details in reconstruction, we use 
an iterative regularization procedure. Instead of stopping at 
the solution 0f  to Eq. (7), we use it to iteratively refined 
nonlocal TV regularization: 

2
2 1arg min{|| || ( , )}k kDλ −= − +

f
f d Ef f f , for  k 1> .     (12) 

where ),( kD ff  is the Bregman distance between f and kf  
associated with the nonlocal TV norm, defined as  

     
NLTV NLTV NLTV( , ) || || || || , (|| || )k k k kD = − − < − ∂ >f f f f f f f

 where >⋅⋅< ,  denotes the inner product and NLTV(|| || )k∂ f  is 
an element of the sub-gradient of the nonlocal TV norm at 
point kf . The Bregman distance is an indication of the 
increase in NLTV|| ||f  over NLTV|| ||kf  above linear growth 
with slope NLTV(|| || )k∂ f .  

Using nonlocal TV regularization with Bregman iteration, 
it has been shown [15] that the sequence kEf  monotonically 
converges to the acquired noisy data d in L2 sense, i.e., the 
reconstruction kf  approaches the unregularized basic SENSE 
reconstruction. For λ  sufficiently large, the sequence also 
monotonically gets closer to the noise free data trueEf , whose 
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convergence is faster than noise. Therefore, if a good 
stopping rule is applied, Bregman iteration can recover fine 
details of the image before the noise. The discrepancy 
principle [19] is used here, which stops the iterative 
procedure when the data inconsistency residual is reduced to 
below the measurement noise level for the first time. When 
the noise level is not available, another strategy is to iterate 
until the reconstruction is visually noisier than the one from 
the previous iteration. According to [15], the minimization in 
Eq. (7) is equivalent to  

{ }2
1 2 NLTV

arg mink k λ−= + − +
f

f d v Ef f        (13) 

where 1k k k−= + −v v d Ef  for 11,k > =v 0 . It is seen that the 
above minimization in each Bregman iteration is the same as 
nonlocal TV regularization formulation Eq. (7) except that d  
is replaced by 1−+ kvd  in the first term. It becomes nonlocal 
TV regularization when the iteration index is k = 1. 

IV. EXPERIMENTAL RESULTS AND DISCUSSION 

A. Experiments Settings 
The feasibility of the proposed method was validated on a 

set of in vivo brain data, which were acquired on a 3T 
commercial scanner (GE Healthcare, Waukesha, WI) with an 
8-channel head coil (Invivo, Gainesville, FL). A healthy 
volunteer was scanned with a 2D T1-weighted spin echo 
protocol (axial plane, TE/TR = 11/700 ms, 22cm FOV, 10 
slices, 256 × 256 matrix). Informed consent was obtained 
from the volunteer in accordance with the institutional review 
board policy. The sensitivity information of each coil was 
obtained by pre-scanning. 

The proposed method is compared with iterative conjugate 
gradient (CG) SENSE reconstruction due to its inherent 
regularization capability [19], TV regularization and 
Tikhonov regularization with a reduction factor 4. All 
methods are implemented in MATLAB (Mathworks, Natick, 
MA). The sum-of-square (SoS) reconstructions from the fully 
sampled data of all channels are shown in the top left of Fig. 
1as the reference for comparison. In nonlocal regularization, 
the width of searching window is 11δ = , which means when 
calculating the weighted graph, we only consider the 
neighbors within an 11 × 11 window central the current pixel. 
The patch size is 5m = , which means when calculating the 
gradient between two pixels, we not only use the pixel itself 
but also the patch of this pixel. These two parameters are 
chose with an appropriate tradeoff between computation time 
and image quality. All images are normalized and shown in 
the same scale. We label the method on the top-left corner of 
each reconstructed image.  

From Fig.1, we can see that NLTV can preserve most 
details in human brain images and only presents slight 
artifacts. It is due to calculating the nonlocal graph from 11 × 
11 neighboring pixels and each with a 5 × 5 patch.  While TV 
regularization and Tikhonov regularization both exhibit 
obvious residual aliasing artifacts. And nonlocal TV 
regularization is able to suppress more noise than Tikhonov  

 
Fig. 1. The reconstructions using four different methods with reduction factor 
4 from an 8 channel scanned human brain data. NLTV regularization can 
preserve most details and only presents slight artifacts. TV and Tikhonov 
regularization both exhibit obvious residual aliasing artifacts. CG 
reconstructions have most severe artifacts. 
 
regularization. Additionally, some high intensity details are 
lost due to the piecewise smooth constraint in TV 
regularization, which makes the image look blocky. The 
reason is that it only calculates the gradient from the nearest 
few neighboring pixels and each only with itself. CG 
reconstructions have most severe artifacts compared with the 
other methods because the inherent regularization is not 
sufficient. 
 
Figure 2 shows the corresponding error images for the above 
reconstructions with four different regularization methods. 
The improvement of nonlocal TV regularization over the 
existing regularization methods in reducing artifacts is clearly 
seen in the error images. 
 

Table 1. Comparison of NMSEs 
NMSE 

(x10-002) NLTV TV Tikho CG 

R=4 0.41 1.04 0.99 1.06 
 
The normalized mean square error (NMSE) provides a 

combined metric for both image noise and artifacts. The  
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Fig. 2  The corresponding error images of the reconstructions in Fig.1. 

 
NMSE between the reference and reconstructed images for 
human brain data were also computed to evaluate the 
reconstruction performance with different regularization 
methods, given in Table 1. In terms of NMSE, the nonlocal 
TV regularization is superior to the other regularization 
methods. This may be due to calculating the gradient using a 
patch of nonlocal pixels.   

V. CONCLUSION 
In this paper, the nonlocal TV regularization with Bregman 

iteration is used to solve the ill-conditioning problem 
encountered in parallel MR imaging. This regularization 
method uses a nonlocal weighted graph to present the 
similarity of different pixels instead of direct subtraction. The 
experimental results demonstrate the nonlocal TV 
regularization with Bregman iteration is able to preserve 
more details and fine structures than some commonly used 
regularization methods.  
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