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Abstract—The propagation of shear waves in soft tissue can 
be visualized by magnetic resonance elastography (MRE) to 
characterize tissue mechanical properties. Dynamic 
deformation of brain tissue arising from shear wave 
propagation may underlie the pathology of blast-induced 
traumatic brain injury. White matter in the brain, like other 
biological materials, exhibits a transversely isotropic structure, 
due to the arrangement of parallel fibers. Appropriate 
mathematical models and well-characterized experimental 
systems are needed to understand wave propagation in these 
structures. In this paper we review the theory behind waves in 
anisotropic, soft materials, including small-amplitude waves 
superimposed on finite deformation of a nonlinear hyperelastic 
material. Some predictions of this theory are confirmed in 
experimental studies of a soft material with controlled 
anisotropy: magnetically-aligned fibrin gel. 

I. INTRODUCTION

Waves propagate at different speeds in anisotropic soft 
materials, depending on the direction of propagation, the 
direction of particle motion, the material orientation, and the 
stress and strain in the material. Wave propagation in brain 
tissue is important in magnetic resonance elastography 
(MRE) [1] and in the brain’s response to blast. This paper 
reviews important results concerning wave propagation in 
linear and nonlinear materials, and illustrates some of these 
results with examples from simulation and experiment. 

II. THEORY

A. Linear theory of waves in transversely isotropic elastic 
solids
In linear elastic materials, the Cauchy stress tensor T is 

related to the strain tensor, e, by the fourth-order elasticity 
tensor, C [2-5]. In Cartesian coordinates this relationship is  

klijklij eCT .       (1) 

The elasticity tensor can be represented by a symmetric 
matrix of coefficients, D . The relationship between the 
Cartesian components of C and the elements of D is [2]: 
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For a transversely isotropic material in which the plane of 
isotropy is the 2-3 plane, the normal to the plane of isotropy 
is a . The corresponding elasticity matrix is: T]0,0,1[1e

p

p

t

tttm

tttm

mmpp

D
2

2
2

. (2) 

1

2

3

Figure 1: Schematic diagram of a transversely isotropic 
material with normal to the plane of isotropy (often 
equivalent to fiber direction) .T]0,0,1[1ea

The elasticity tensor is characterized by five independent 
parameters t , p , t , p , m . An alternate set of five 
independent parameters [3] is given by the two shear 

moduli t , p , two Young’s moduli, , , and a 

Poisson’s ratio 

tE pE

pt  describing the shortening in the plane of 
isotropy (t-direction) that accompanies lengthening normal 
to the plane (p-direction). The two sets of five parameters 
are related by the equations. 
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Incompressible transversely isotropic material 
For an incompressible transversely isotropic material, the 
Poisson’s ratio 2/1pt . In this case, there are only three 
free parameters [6]. For example, if the two shear moduli 

t , p ,  and the ratio of Young’s moduli are

specified, the remaining parameters are: 
tpE EEr /
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For an ideally incompressible material the alternate 

parameters t , p , m are undefined (in practice, for a nearly 
incompressible material they simply become very large). In 
incompressible materials, longitudinal waves do not exist, 
but shear waves propagate with finite speed. 

Wave propagation speeds 
A propagating plane wave is described by the equation for 

displacement  
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Propagation direction is designated by the unit vector: n
and the “polarization direction” (the direction of particle 
motion) is specified by the vector . In longitudinal 
waves ; in shear waves . The propagation 

speed  (m/sec), where k is the wavenumber 
(rad/m) and  is the frequency (rad/sec).  

m
nm || nm

/kc

Substituting this solution into the equation of motion 
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and using (1) the following eigenvalue problem is obtained: 

 mcmnnC jlkiijkl
2

    (7a)
or

mQ(n)m 2c .     (7b) 
The Cartesian components of the “acoustic tensor” Q are 

kiijkljl nnCQ ;       (8) 

they depend on the elasticity tensor C and the direction of 
propagation, n. The eigenvalue problem may be solved to 
find wave propagation speeds and the polarization directions 
of plane wave solutions. 

Example 1: Given a material with elasticity matrix D as in 
(2). Suppose the normal to the plane of isotropy, a, is 
specified by . Let lie
in the plane of isotropy. The eigen-speeds and directions are 

T]0,0,1[1ea T]0,1,0[2en

Tttc ]0,1,0[,
22

1 m
   

(longitudinal)  (9a) 

Tpc ]0,0,1[,2
2 m       (transverse)    (9b) 

Ttc ]1,0,0[,2
3 m      (transverse)   (9c) 

Example 2: Given an elastic material with elasticity matrix 
D as in (2). Suppose the normal to the plane of isotropy, a,
is specified. Let n be defined only by the angle  between n
and a. A shear wave solution exists with speed and 
polarization defined by 

nm,sincos 222 tpc
     (10) 

For materials that are nearly incompressible, the other two 
eigensolutions (quasi-longitudinal and quasi-shear waves) 
are of much longer wavelength [2]. 

a) b)

c) d)

e3
e2

e1

Figure 2: Illustrations of displacement fields due to 
propagating waves. (a) Longitudinal wave propagating 
normal to the plane of isotropy (i.e., along the fiber or 
stretch) direction: , , .
(b) Shear wave propagating along the fiber 
direction, , . (c) Shear wave 

propagating transverse to fibers , .
(d) Shear wave propagating in an arbitrary direction relative 
to a: , . Propagation direction is 
shown by the red vector; polarization by the green vector.  

T]0,0,1[a T]0,0,1[n T]0,0,1[m

T]0,0,1[n T]1,0,0[m
T]0,1,0[n T]1,0,0[m

T]1,0,1[n T]0,1,0[m
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B. Nonlinear theory:  waves in transversely isotropic 
hyperelastic materials 

Biological materials are nonlinear, and may experience  
considerable residual stress (which is partially or fully 
relieved when tissue is excised). In these materials, the wave 
speeds, including directional dependence, are affected by the 
underlying deformation. Under such conditions, wave 
propagation is described as infinitesimal motion 
superimposed on a finite deformation [7-8]. 

The deformation gradient F describes a finite deformation in 
terms of the relationship between the current position x and 
the reference position X of a material element.  

X
x  F

         
(11)

The Lagrangian strain E is obtained  from 
)(2

1 IFF E T
         (12)

A constitutive law for a hyperelastic material is specified by 

a strain energy density function,  ;  the second Piola-
Kirchoff (P-K) stress is: 
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The Cauchy stress  and the first P-K stress 
.
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For small deformations, the nonlinear response can be 
approximated by a linear relationship using the elasticity 
tensor [7] 

ˆ2
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as in 

CDABCDAB EcS .      (15) 

Now consider the small displacement u(x,t) superimposed 
on an initial deformation that maps X to x. Let the new 
reference position , and the new deformed position 

.
xX'

,t)(xuxx'

The linearized equation of motion with respect to the current 
configuration is [7]: 

2

2

div
t
uT

      (16) 

The quantity T is the incremental Cauchy stress due to u,
which can be written in terms of a new elasticity tensor  

and the displacement gradient: 0A uAT grad0 . In 
Cartesian coordinates we have 

dcabcdab uAT ,0      (17a) 
Where the elasticity tensor in Cartesian coordinates: 0A

abcdacbdabcd LTA 00   ,   (17b) 

the Cauchy stress due to the finite deformation is 
1

BDdDbBbd SFFJT  ,  (17c)
and

1
0 MBPDdDcPbBaMabcd cFFFFJL  .   (17d)

Substituting (17) into (16) we obtain the linearized equation 
governing wave propagation, 
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It is apparent that the initial deformation affects the 
elasticity, even inducing effective anisotropy into the 
equations for wave propagation. 

Example 3: Incompressible, isotropic material, stretched 
Given a neohookean, incompressible material that has 

undergone uniaxial stretch (Fig. 3). Wave propagation 
speeds depend on the stretch and the direction of 
propagation [8]. 

Figure 3: Schematic diagram of finite uniaxial stretch. 
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The constitutive model is given by 

1det    ),3(
2 1 FJIW

    (19) 
Suppose the material undergoes normal stretches  ,, 21

and 3  ( 1321 ). The elasticity tensor is formed, 
as described above, and a plane wave solution (as in Eq. 5)  
is assumed. Again, we obtain an eigenvalue problem (as in 
Eq. 7), where (in Cartesian coordinates): 

0A

    
     (20kiijkljl nnAQ 0

For this general situation, shear wave speeds are [8] 
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Longitudinal waves do not exist if the material is 
incompressible. 

For the case of uniaxial stretch 1 ,  wave propagation 
parallel to direction of stretch is specified by setting 
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T]0,0,1[n . The corresponding wave speed is 

Tmmc ],,0[, 32

2
12

3,2 m
   

(22)

Propagation perpendicular to stretch is specified by setting 
; in this case the propagation speed is T]0,1,0[n

1

2
22c

    
(23)

Example 4: Transversely isotropic hyperelastic material 
A transversely isotropic material is symmetric with respect 
to the normal to the plane of isotropy: a [6]. The quantities 

and are “pseudo-invariants” 

(invariant under rotations about a). is equivalent to the 

stretch

CaaTI 4 aCa 2
5

TI

4I

a  in the direction of a, whereas includes 
contributions from shear out of the plane of isotropy (in 
Cartesian coordinates these correspond to the strain 
components ), as well as stretch 

5I

31211312 ,,, EEEE a . The 
vector a typically reflects the direction of fibers, or other 
structural anisotropy. A simple constitutive law for a 
hyperelastic material that illustrates anisotropy in shear is 
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The intuitive prediction that wave speed will depend on the 
polarization of the shear wave can be confirmed. For 
example, suppose . For propagation 
perpendicular to fibers ( ) there are two possible shear 
wave speeds, as well as a longitudinal wave speed. 

T]0,0,1[1ea
an

nm ||,3
4

2
1c       (longitudinal)  (25a) 

Tk
c ]0,0,1[,32

2 m   (out-of-plane shear)(25b) 

Tc ]1,0,0[,2
3 m      (in-plane shear) (25c) 

Note that the shear wave solution involving only 
deformation in the plane of isotropy is not affected by 
anisotropic term in the constitutive equation. 

All the preceding results are valid in an infinite domain, 
with no dissipation. Surface interactions and energy loss will 
affect the solutions observed in bounded, physical systems. 

III. SIMULATION
Simulations were performed to visualize wave propagation 
in anisotropic soft materials, and to explore the effects of 

boundary conditions (finite domain) and dissipation. A cube 
of material, 25 mm on a side, was modeled and simulated 
using COMSOL finite element software (COMSOL, 
Burlington, MA). The domain was discretized into 16,985 
tetrahedral elements (Lagrange quadratic type). Normal 
displacements on five sides were zero, and on the sixth side 
(top) a distributed harmonic force was applied in the x-
direction. For all the examples shown, the frequency was 
400 Hz. Since the material is linear the wavelength is 
independent of  amplitude. Dissipation is modeled by a loss 
factor, , where (

)
). Dissipation is 

necessary to obtain converged solutions; the value of the 
loss factor was chosen to model experimental behavior (Fig. 
7). The frequency response was obtained via the PARDISO 
linear system solver (tolerance = 1.0x10

titi eie 00 )1(

-6).

a) b)

c) d)

Figure 4: Displacement images during shear wave 
propagation in transversely isotropic materials at a 
frequency of 400Hz. (Left) Excitation normal to the plane of 
isotropy; (Right) Excitation in the plane of isotropy. 
Parameters: (a),(b) Anisotropy ratio of Young’ moduli: rE=2,
in-plane shear modulus μt=860 Pa, out of plane shear 
modulus μp=2000 Pa;  (c), (d) rE=2, μt=215 Pa, μp=1000 Pa.  
Loss factor 1.0 . The Poisson’s ratio was set 
to 49.0pt .

Figure 5: Cross-sectional plot of displacement due to 
propagating shear waves. Parameters: rE=2, μt=215 Pa, 
μp=1000 Pa. Loss factor 5.0 .
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Figure 6: Simulation: Displacements parallel (x) and 
perpendicular to (y) the direction of excitation, shown for 
fiber orientations of 0º, 30 º, 60 º, and 90 º. Results show 
more than one wave speed for directions other than 0º and 
90º; the combination of material anisotropy and reflective 
boundary conditions leads to interaction of shear waves of 
different speeds and directions. 

IV. EXPERIMENTAL EXAMPLES
Fibrin gels with anisotropic structure and mechanical 
properties can be obtained by polymerization in a strong 
magnetic field [9-10]. MRE of aligned fibrin gel illustrates 
features of shear wave propagation in anisotropic materials.  

Human plasminogen-free fibrinogen (EMD Biosciences, 
La Jolla, CA, product no. 341578) was dissolved in tris-
buffered saline (TBS) and dialyzed in TBS overnight in 
polymer tubing (Thermo Scientific, Rockford, IL, product 
no. 68700, 8,000 MWCO).  The fibrinogen solution was 
filtered with a 5 m filter. Equal volumes of fibrinogen and 
thrombin (Sigma-Aldrich, St. Louis, MO, product no. 
T4648) solutions were mixed with CaCl2 solution yielding 
the final concentrations: 10 mg/mL fibrinogen, 25 mM Ca++,
and 0.2 NIH units/mL thrombin.  The solution was poured 
into a 20 mm x 20 mm x 20 mm hollow plastic cube. Further 

details are in [10]. 
 Gels were polymerized for 2hrs at room temperature 
(24ºC) in the center of the bore of an 11.7T MRI scanner 
(Varian, Inc., Palo Alto, CA). The direction of the magnetic 
field during polymerization, denoted by the unit vector eB
was recorded and marked on each sample. 

B

 MRE was performed in a 4.7T magnet (Oxford 
Instruments, Oxfordshire, UK) with a Varian imaging 
system (Varian Inc., Palo Alto, CA). A piezoelectric 
actuator (Model APA100M-NM, CEDRAT Technologies, 
Troy, NY) was attached with the cube to a rigid plastic base. 
The actuator arm was coupled to the surface of the gel in 
order to excite shear motion at 400Hz in either of two 
directions, depending on the orientation of the cube. The 
actuator and gel assembly was placed in the transmit/receive 
coil of the scanner, and a standard spin-echo sequence, 
modified to include motion encoding gradients [1], was used 
to acquire images. First, the actuator was excited to provide 
surface displacements in the direction of eB (i.e., parallel to 
the axis of the sample that was aligned with the magnetic 
field when the gel was polymerized). Second, the specimen 
was rotated by 90º so that the actuator provided surface 
displacements in the direction normal to e

B

BB.
 Standard MRE procedures were used to visualize wave 
motion. MRI data obtained during wave propagation were 
Fourier-transformed into the spatial (image) domain, 
normalized with respect to the baseline image, and phase-
unwrapped (PhaseVisionTM, Loughborough, UK) to 
remove the 2  phase ambiguity, resulting in a phase-contrast 
image (Fig. 7a, 7c) with intensity proportional to 
displacement.  

In Figure 7, the wave length depends on the direction of 
excitation relative to the direction of the magnetic field 
during polymerization. This is consistent with the alignment 
of fibrin fibers with the magnetic field observed in [9-10], 
and accompanying anisotropy in shear modulus [10].  

eB

eB

Figure 7: MR Images of propagating shear waves in 
anisotropic fibrin gels polymerized in a magnetic field. 
(Top) Excitation parallel to the direction of imposed 
magnetic field (dominant fibrin fiber direction); (Bottom) 
Excitation perpendicular to the dominant fiber direction.  
(Right) Cross-sectional plots of displacement (c.f. Fig. 5). 
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V. DISCUSSION
This paper reviews theoretical results on shear waves in 

anisotropic elastic and hyperelastic materials. A particularly 
interesting result is that a finite static deformation, such as a 
stretch, affects the propagation of superimposed shear 
waves. In effect, the stretch can mimic the effect of 
structural anisotropy. We have recently observed that white 
matter is under measurable tension along the axis of fiber 
tracts [11]. This may confound the measurement of 
mechanical properties by MRE.  

Viscoelastic effects are clearly important in soft tissues. 
Dissipative effects limit the penetration depth of waves in 
MRE [1]. The magnitude of shear modulus is significantly 
greater at high frequencies [12]. Viscoelasticity is not simple 
to model, and the choice of model affects results. In this 
paper, we use a “loss modulus” to  introduce dissipation into 
our finite element model.  

Sinkus et al. [13] describe an approach to estimation of the 
shear moduli t , and p ,  given MRE measurements of 
experimental displacement fields. Such fields generally 
include motion other than shear waves. Their method also 
provides estimates of a viscous parameter [14]. A key 
feature of their method is the use of the Hodge-Helmholtz 
decomposition to eliminate contributions of longitudinal 
waves, and focus on shear wave contributions. 

Experimental measurements of shear wave propagation in 
an anisotropic gel are consistent with predictions from a 
linear model. Specifically, the wavelength is longer for shear 
waves polarized along the dominant fiber direction than in a 
direction perpendicular to the fibers. Simulations also 
exhibit this behavior, when excitation is parallel or normal 
to the plane of isotropy. When the excitation is at an 
arbitrary angle, simulations illustrate the complexity of wave 
propagation: solutions do not consist of a single wave 
propagating in a single direction. Rather, displacement fields 
consist of a superposition of waves propagating in different 
directions, reflecting off boundaries and surfaces. 

In this paper, the experiments have guided simulations. 
Excitation at 400 Hz produces waves that propagate through 
fibrin gel with several wavelengths visible in our samples; 
the same frequency was used in simulation. Also, since 
fibrin gels and tissues are nearly incompressible, a Poisson’s 
ratio 49.0pt  was used. If the gels deviate from 

incompressibility ( 2/1pt .), longitudinal waves exist but 

are are extremely long, and interaction between longitudinal 
and transverse waves can exist. The effect of pre-stress may 
be important in modeling brain injury, since white matter 
has been observed to be under measurable tension in 
mammalian brain tissue [11].  This tension appears to be of 
the same order of magnitude as the linear shear modulus, so 
it may affect shear wave propagation patterns. 

In conclusion, the effects of anisotropy, finite 
deformations, and boundary conditions complicate the 
interpretation of shear wave measurements, and the 

prediction of the response to transient excitation, such as 
blast. Experimental results in materials with controlled 
anisotropy are possible and will help illuminate the behavior 
of brain tissue. 
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