
  

  

Abstract—In this paper, we present a method that detects 
intracranial space-occupying lesions in two-dimensional (2D) 
brain high-resolution CT images. Use of statistical texture atlas 
technique localizes anatomy variation in the gray level 
distribution of brain images, and in turn, identifies the regions 
with lesions. The statistical texture atlas involves 147 HRCT 
slices of normal individuals and its construction is extremely 
time-consuming. To improve the performance of atlas 
construction, we have implemented the pixel-wise texture 
extraction procedure on Nvidia 8800GTX GPU with Compute 
Unified Device Architecture (CUDA) platform. Experimental 
results indicate that the extracted texture feature is distinctive 
and robust enough, and is suitable for detecting uniform and 
mixed density space-occupying lesions. In addition, a significant 
speedup against straight forward CPU version was achieved 
with CUDA. 
 

I. INTRODUCTION 
HERE has been growing interests in developing 
Computer-Aided Diagnosis (CAD) techniques with 

high-resolution Computer Tomography (CT) for detecting 
brain structural and anatomical abnormities[1][2]. Among 
these techniques, the construction of brain atlases has been 
central to the understanding of the variabilities of brain 
anatomy. Large sets of images are mapped into a common 
coordinate system, such as a deterministic or probabilistic 
atlas, to study intra-subject and inter-subject variabilities, and 
to provide voxel-wise statistical analysis of the resulting 
scalar or vector fields. Subsequently regions in which there 
are significant group or condition differences yielded by 
brain abnormities could be determined. Commonly used 
examples for these approaches include Statistical Parametric 
Mapping (SPM), RAVENS map[3], voxel-based 
morphometry (VBM)[4], and tensor-based morphometry 
(TBM)[4]. Promising detection results have been achieved in 
a variety of disease including, semantic dementia, 
Alzheimer’s disease, schizophrenia, autism, bipolar disorder, 
and primary progressive aphasia. However, these methods 
were originally devised to identify subtle neuroanatomical 
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changes associated with neurological and psychiatric 
dysfunction. When dealing with intracranial space-occupying 
lesions, such as tumor and stroke, satisfying lesion 
segmentation results cannot be easily achieved [5]. It is 
because such type of brain lesion usually induces relatively 
large displacements and complicated intensity patterns rather 
than subtle local morphological changes.  

Recent studies advocate that intrinsic intensity patterns, 
especially regional texture signatures are much more reliable 
for mixed density lesion detection [6][7]. In the literature, 
methods for extracting image texture feature often rely on 
intensity gradient, moments, Gabor features, local frequency 
representations and wavelet coefficients. These methods have 
different detection performance and computational costs.   

The purpose of this paper is to propose an effective 
detection scheme for intracranial space-occupying lesions, 
which uses statistical texture atlas to characterize brain local 
anatomical features. And our goal is to make the texture 
feature distinctive and robust enough. In addition, to make the 
detection method more applicable, we have implemented the 
pixel-wise texture extraction procedure on Nvidia 8800GTX 
GPU with Compute Unified Device Architecture (CUDA) 
platform. It should be noted that this study has examined only 
2D CT images, and further implementations on 3D volumes 
will be summarized in our next study.  

II. METHODOLOGY 
Fig.1 provides a summary of the proposed intracranial 

space-occupying lesion detection scheme.  

 
Fig.1. Flow diagram of the proposed lesion detection scheme 
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A. Preprocessing 
Preprocessing consists of two stages: skull-stripping and 

rigid registration. 1) In the first stage, a priori-based region 
growing algorithm is performed on 2D CT slices to extract 
brain regions, and then morphological operator is used to 
modify the initial segmentation results. 2) In the second stage, 
mutual-information-based rigid registration, provided by ITK, 
is employed in order to compensate for possible motion and 
position differences between individuals.  

B. Deformable Registration 
Demons algorithm, originally proposed by Thirion[8], is 

applied in the deformable registration stage. Demons is based 
on the optical flow method, which is used to determine small 
deformations in temporal sequences. The optical flow 
methods finds a displacement field that deforms the moving 
images, M, so that it is matched with the subject images S. 
The basic hypothesis of optical flow is that intensities are 
constant between M and S. 

 
Fig.2. 2D Brain CT images after pre-processing and Demons registration 

C. Texture Feature Extraction 
Although a large number of related literature have focused 

on sophisticated texture extraction methods, it is still 
necessary to mention that more features will not always 
produce better results in characterizing brain anatomy[9][10], 
because detailed features vary dramatically across individual 
brains. To draw a balance, we introduce a relatively simple 
but discriminative and robust texture extraction method. Each 
point in the image is represented as a texture attribute vector, 
which uses multi-scale local intensity histogram and edge 
information to characterize the geometric features around the 
point at different resolutions.  

 
Fig.3. Schematic demonstration of texture extraction 

1) Down-sampling: The original image ( )f x , 2∈x R , is 
down-sampled by a factor of s , resulting in several 
down-sampled images at different levels, ( )s sf x , 

where [ / ]s s=x x , and when 1s = , ( )s sf x  is the original 
image. Gaussian filter is used to down-sample an 512×512 
size image, and three resolution levels, i.e., 1, 2,4s = , are 
used, resulting in 512×512, 256×256, and 128×128 
images.  

2) Computing local histogram: For each resolution 
image ( )s sf x , a local histogram ( )s sh x  of intensities is 
calculated from a spherical region around point sx . The 
radius of spherical region is set to be identical across different 
resolutions, as shown in Fig. 3. Therefore, for each point x  
in the original image, we can obtain several local histograms 
from the multi-scale images, which capture different levels of 
spatial intensity distribution information around point x .   

3) Computing geometric moments: The statistical features 
are, respectively, extracted from each histogram ( )s sh x , by 
calculating its regular geometric moments.  

   ( , ) ( , )p
s s s si

m p i h i= ∑x x ， 0,1,2p =          (1) 
4) Adding Canny edge strength: In addition to using the 

intensity histogram as attributes, boundary information is also 
extracted in order to provide more accurate anatomical 
features. In this study, Canny edge detector is used to 
quantify the strength of boundary on each point.  

5) Generating texture attribute vector: For a single 
resolution, texture attribute vector is defined as:             

( ) [ ( ,0) ( ,1) ( , 2) ( )]s s s s s s s s s sm m m c=V x x x x x    (2) 
Here, ( )s sc x denotes Canny edge strength on point sx at 

resolution s . Therefore, the final texture attribute vector can 
be represented as: 

                1 2 4( ) [ ( ) ( ) ( )]T =V x V x V x V x                    (3) 

D. Statistical Texture Atlas Construction 
Given a collection of normal brain images, we treat the 

texture attribute vector at the same point across the images as 
normally distributed. Specifically, the set vΩ (x) of the 
attribute vector of the corresponding points at a particular 
location x ( 2∈x R ) in a spatial normalized coordinate is 
approximated by a single multi-dimension Gaussian 
distribution with mean vector V and covariance matrix vΣ . 
Therefore, the value of probabilistic distribution function of a 
given attribute vector V(y) , at location y belonging to 

vΩ (x)  is defined as: 

           ( ) 1( ) | ( ) exp
2v vf η ⎛ ⎞= ⋅ −⎜ ⎟

⎝ ⎠
V y Ω x E            (4) 

Where, η is a normalization coefficient, and 

( ) ( )1= ( ) ( )
T

v v
−− −E V y V Σ V y V               (5) 

As we know, vE is actually the Mahalanobis distance 
between ( )V y  and V  in vector space. Apparently, the 
construction procedure is pixel-wise, and each point in the 
co-registered reference coordinate across individuals has its 
mean vector V and covariance matrix vΣ , respectively.  

E. Lesion Detection 
So far, we have constructed the statistical texture atlas, 

which is parameterized by mean texture attribute vector 
V and covariance matrix vΣ of normal individuals. In this 
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sense, the problem of lesion detection can be restated as 
measuring how the texture attribute vectors of points in the 
input subject image are similar or belonging to the 
corresponding locations in the atlas.  For simplicity, we use 
Mahalanobis distance vE  as the measurement.    

III. IMPLEMENTATION 
Graphics Processing Units (GPUs) have emerged as a 

powerful platform for high-performance computation. They 
have been successfully used to accelerate many scientific 
workloads[11][12].  As mentioned in Section I, the 
construction of statistical texture atlas is typically 
time-consuming and the implementation should be optimized. 
In practice, the former three operations, including 
skull-stripping, rigid registration and Demons registration are 
implemented in ITK platform, and only texture extraction has 
been transplanted on GPU with CUDA. It is because: 1) ITK 
is thread-parallel architecture and the program would also be 
accelerated; 2) texture feature extraction is naturally data 
independent and suitable for GPU implementation.  

A. Programming Models on CUDA 
CUDA is a general purpose parallel computing 

architecture that leverages the parallel compute engine in 
Nvidia graphics processing units (GPUs) to solve many 
complex computational problems in a fraction of the time 
required on a CPU. In CUDA, programs are expressed as 
kernels, which have a Single-Program, Mutiple-Data(SPMD) 
programming model. Applications that are executed many 
times, but independently on different elements of the dataset, 
can be isolated into a kernel that is running on GPU in the 
form of many different threads. The CUDA Kernel runs 
asynchronously on the GPU and executes many data-parallel 
threads simultaneously. 

B. Texture Extraction 
As explained previously, in order to map an algorithm to 

the CUDA programming environment, we should identify 
data-parallel portions of the application, and isolate them as 
CUDA kernels. According to the algorithm description below, 
texture extraction operations are executed iteratively and 
independently on different elements of the dataset. The target 
dataset is stored in device Texture memory. 

1: Down-sample images by applying Gaussian smoothing 
2: Initialize ( )s sV x  to zero vector 
3: repeat 
4:     for each pixel, i do 
5:          Compute local histogram  
6:          Compute geometric moments 
7:          Compute Canny edge strength 
8:     end for 
9: until all resolutions are done 

 
The GPU hardware allows for fast performance of 

pixel-wise operations. To our delight, the major operations of 

computing geometric moments of local histograms are 
naturally pixel-wise and spatially independent. Meanwhile, 
many steps in Canny edge detection procedure, such as 
gradient finding, convolution, and non-maxima suppression 
can be performed in parallel, too.  

For our implementation, we give one thread to every pixel. 
Algorithm 1 runs on the CPU while algorithm 2 runs on the 
GPU.  

Algorithm 1 
CUDA_Feature(Image Data V, Width, Height) 

1: Create point array A and bind it to two 
dimensional texture memory T 
2: Allocate Global memory F for saving GPU 
results 
3: for every point in parallel do 
4: invoke CUDA_Feature_Kernal(F) on the grid 
5: end for 
6: Send results to CPU memory 

 
Algorithm 2  CUDA_Feature_Kernal(F) 

1: tid←getThreadID, bid←getBlockID 
2: Compute point offset←bid*width+tid 
3: for all the neighbors in the window of point 
[bid,tid] do 
4: Compute four features of point and put into 
temp 
5: end for 
6: F[offset]←temp 
 
Usually, a completed version of CUDA implementation 

includes host code in CPU and kernel code in GPU, 
corresponding to algorithm 1 and algorithm 2, respectively. 
In practice, the host code is responsible for realizing IO 
interface and procedure control, which is very similar with 
ordinary standard C code. The major difference is that host 
code might use some CUDA APIs to communicate with GPU 
and invoke the computing procedure. In our implementation, 
testing image is firstly read into CPU memory, and bind to the 
texture memory, which could visit the image data by 2 
dimensional index. Meanwhile, the attached cache of texture 
memory tremendously reduces IO cost when accessing the 
pixel data under read mode. When data is transferred to GPU, 
kernel code is invoked for parallel computing. The most 
important action in kernel code is to determine the thread 
allocation. In our implementation, in order to optimize the 
thread parallelism in the target GPU device, the original size 
of testing images is 512×512. Then, 512 blocks are used, each 
of which has 512 threads. 

IV. EXPERIMENTAL RESULTS 

A. Lesion Detection Results 
In practice, we have collected 147 normal individuals’ 

brain HRCT volumes for statistical texture atlas construction, 
and the slice thickness varies from 1mm to 3mm. With the 
help of radiologists, one single slice is picked out at the 
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similar location from each volume. After rigid and 
deformable registration, these 2D slices have been 
transformed into a normalized reference coordinate. Table I 
shows the registration accuracy, in terms of average 
correlation coefficient, average signal-to-noise ratio, and 
average mean squared error. Fig4 shows the segmentation 
results of three typical intracranial space-occupying lesions, 
which are generated according to the Mahalanobis distances 
of the corresponding pixels between atlas and sample images.  

 
TABLE I   REGISTRATION ACCURACY 

 
ccR  SNR  MSE  

ORIGINAL 0.8243 1.5074 3.94E+005 
REGISTERED 0.9637 12.4518 40.5371 
  

 
Fig.4. Lesion detection results 

B. CUDA performance of Texture Extraction 
Our implementation is running on a 1.2GHz Pentium 4 

Dual Core, 1 GB RAM with Nvidia 8800GTX graphics chip 
with 768MB on board, and using CUDA 1.1 under Microsoft 
Windows XP SP2. For testing, we compared the performance 
of texture extraction procedure of all the 147 sample images 
on GPU and CPU. GPU implementation is written in CUDA, 
while CPU version is written in standard C. Performance 
results are shown in Table II. Detailed time consumption is 
profiled in Fig. 5. Comparisons between CUDA and standard 
C implementation demonstrate a significant speedup in GPU 
against straight forward CPU functions. 

TABLE II   CUDA SPEEDUP 
RESOLUTION GPU(S) CPU(S) SPEED UP 

512×512 470.4 10772.16 22.9 
256×256 264.6 5662.4 21.4 
128×128 161.7 3411.9 21.1 

TOTAL SPEEDUP  22.13 
 

 
Fig.5. CUDA profile output 

V. CONCLUSIONS AND DISCUSSIONS  
We present a GPU-based accelerated detection method for 

intracranial space-occupying lesions, using statistical texture 
atlas. In our approach, local intensity histogram distribution 
and Canny edge information are selected to characterize 
statistical texture patterns of brain anatomy. Experimental 
results support that Mahalanobis distance in feature space 
effectively depicts the difference between the cross-region 
mixed density lesions and normal tissues. Further more, we 
have implemented a parallel computing scheme on CUDA to 
accelerate the texture extraction procedure, which makes it 
more applicable for large scale clinical applications. However, 
it should be noted that this study has examined only 2D CT 
images, and further implementations on 3D volumes will be 
summarized in our next study.  
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