

Abstract—In this paper, we present a method that detects
intracranial space-occupying lesions in two-dimensional (2D)
brain high-resolution CT images. Use of statistical texture atlas
technique localizes anatomy variation in the gray level
distribution of brain images, and in turn, identifies the regions
with lesions. The statistical texture atlas involves 147 HRCT
slices of normal individuals and its construction is extremely
time-consuming. To improve the performance of atlas
construction, we have implemented the pixel-wise texture
extraction procedure on Nvidia 8800GTX GPU with Compute
Unified Device Architecture (CUDA) platform. Experimental
results indicate that the extracted texture feature is distinctive
and robust enough, and is suitable for detecting uniform and
mixed density space-occupying lesions. In addition, a significant
speedup against straight forward CPU version was achieved
with CUDA.

I. INTRODUCTION
HERE has been growing interests in developing
Computer-Aided Diagnosis (CAD) techniques with

high-resolution Computer Tomography (CT) for detecting
brain structural and anatomical abnormities[1][2]. Among
these techniques, the construction of brain atlases has been
central to the understanding of the variabilities of brain
anatomy. Large sets of images are mapped into a common
coordinate system, such as a deterministic or probabilistic
atlas, to study intra-subject and inter-subject variabilities, and
to provide voxel-wise statistical analysis of the resulting
scalar or vector fields. Subsequently regions in which there
are significant group or condition differences yielded by
brain abnormities could be determined. Commonly used
examples for these approaches include Statistical Parametric
Mapping (SPM), RAVENS map[3], voxel-based
morphometry (VBM)[4], and tensor-based morphometry
(TBM)[4]. Promising detection results have been achieved in
a variety of disease including, semantic dementia,
Alzheimer’s disease, schizophrenia, autism, bipolar disorder,
and primary progressive aphasia. However, these methods
were originally devised to identify subtle neuroanatomical

Wei Liu, Department of Electronic Science and Technology, University of
Science and Technology of China (USTC), Hefei, China. (phone:
+86-1-551-3601800, fax: +86-1-551-3601806; e-mail: bmewliu@mail.
ustc.edu.cn)

Huanqing Feng (hqfeng@ustc.edu.cn), Yufeng Huang, Dehuang Wu and
Tong Tong are with the Department of Electronic Science and Technology,
University of Science and Technology of China, Hefei, China.

Chuanfu Li is with Medical Imaging Center of the First Affiliated
Hospital, Anhui College of Traditional Chinese Medicine, Hefei, China.

changes associated with neurological and psychiatric
dysfunction. When dealing with intracranial space-occupying
lesions, such as tumor and stroke, satisfying lesion
segmentation results cannot be easily achieved [5]. It is
because such type of brain lesion usually induces relatively
large displacements and complicated intensity patterns rather
than subtle local morphological changes.

Recent studies advocate that intrinsic intensity patterns,
especially regional texture signatures are much more reliable
for mixed density lesion detection [6][7]. In the literature,
methods for extracting image texture feature often rely on
intensity gradient, moments, Gabor features, local frequency
representations and wavelet coefficients. These methods have
different detection performance and computational costs.

The purpose of this paper is to propose an effective
detection scheme for intracranial space-occupying lesions,
which uses statistical texture atlas to characterize brain local
anatomical features. And our goal is to make the texture
feature distinctive and robust enough. In addition, to make the
detection method more applicable, we have implemented the
pixel-wise texture extraction procedure on Nvidia 8800GTX
GPU with Compute Unified Device Architecture (CUDA)
platform. It should be noted that this study has examined only
2D CT images, and further implementations on 3D volumes
will be summarized in our next study.

II. METHODOLOGY
Fig.1 provides a summary of the proposed intracranial

space-occupying lesion detection scheme.

Fig.1. Flow diagram of the proposed lesion detection scheme

Accelerated Detection of Intracranial Space-occupying Lesions with
CUDA Based on Statistical Texture Atlas in Brain HRCT

Wei Liu, Huanqing Feng, Chuanfu Li, Yufeng Huang, Dehuang Wu and Tong Tong,

T

1131

31st Annual International Conference of the IEEE EMBS
Minneapolis, Minnesota, USA, September 2-6, 2009

978-1-4244-3296-7/09/$25.00 ©2009 IEEE

A. Preprocessing
Preprocessing consists of two stages: skull-stripping and

rigid registration. 1) In the first stage, a priori-based region
growing algorithm is performed on 2D CT slices to extract
brain regions, and then morphological operator is used to
modify the initial segmentation results. 2) In the second stage,
mutual-information-based rigid registration, provided by ITK,
is employed in order to compensate for possible motion and
position differences between individuals.

B. Deformable Registration
Demons algorithm, originally proposed by Thirion[8], is

applied in the deformable registration stage. Demons is based
on the optical flow method, which is used to determine small
deformations in temporal sequences. The optical flow
methods finds a displacement field that deforms the moving
images, M, so that it is matched with the subject images S.
The basic hypothesis of optical flow is that intensities are
constant between M and S.

Fig.2. 2D Brain CT images after pre-processing and Demons registration

C. Texture Feature Extraction
Although a large number of related literature have focused

on sophisticated texture extraction methods, it is still
necessary to mention that more features will not always
produce better results in characterizing brain anatomy[9][10],
because detailed features vary dramatically across individual
brains. To draw a balance, we introduce a relatively simple
but discriminative and robust texture extraction method. Each
point in the image is represented as a texture attribute vector,
which uses multi-scale local intensity histogram and edge
information to characterize the geometric features around the
point at different resolutions.

Fig.3. Schematic demonstration of texture extraction

1) Down-sampling: The original image ()f x , 2∈x R , is
down-sampled by a factor of s , resulting in several
down-sampled images at different levels, ()s sf x ,

where [/]s s=x x , and when 1s = , ()s sf x is the original
image. Gaussian filter is used to down-sample an 512×512
size image, and three resolution levels, i.e., 1, 2,4s = , are
used, resulting in 512×512, 256×256, and 128×128
images.

2) Computing local histogram: For each resolution
image ()s sf x , a local histogram ()s sh x of intensities is
calculated from a spherical region around point sx . The
radius of spherical region is set to be identical across different
resolutions, as shown in Fig. 3. Therefore, for each point x
in the original image, we can obtain several local histograms
from the multi-scale images, which capture different levels of
spatial intensity distribution information around point x .

3) Computing geometric moments: The statistical features
are, respectively, extracted from each histogram ()s sh x , by
calculating its regular geometric moments.

 (,) (,)p
s s s si

m p i h i= ∑x x ， 0,1,2p = (1)
4) Adding Canny edge strength: In addition to using the

intensity histogram as attributes, boundary information is also
extracted in order to provide more accurate anatomical
features. In this study, Canny edge detector is used to
quantify the strength of boundary on each point.

5) Generating texture attribute vector: For a single
resolution, texture attribute vector is defined as:

() [(,0) (,1) (, 2) ()]s s s s s s s s s sm m m c=V x x x x x (2)
Here, ()s sc x denotes Canny edge strength on point sx at

resolution s . Therefore, the final texture attribute vector can
be represented as:

 1 2 4() [() () ()]T =V x V x V x V x (3)

D. Statistical Texture Atlas Construction
Given a collection of normal brain images, we treat the

texture attribute vector at the same point across the images as
normally distributed. Specifically, the set vΩ (x) of the
attribute vector of the corresponding points at a particular
location x (2∈x R) in a spatial normalized coordinate is
approximated by a single multi-dimension Gaussian
distribution with mean vector V and covariance matrix vΣ .
Therefore, the value of probabilistic distribution function of a
given attribute vector V(y) , at location y belonging to

vΩ (x) is defined as:

 () 1() | () exp
2v vf η ⎛ ⎞= ⋅ −⎜ ⎟

⎝ ⎠
V y Ω x E (4)

Where, η is a normalization coefficient, and

() ()1= () ()
T

v v
−− −E V y V Σ V y V (5)

As we know, vE is actually the Mahalanobis distance
between ()V y and V in vector space. Apparently, the
construction procedure is pixel-wise, and each point in the
co-registered reference coordinate across individuals has its
mean vector V and covariance matrix vΣ , respectively.

E. Lesion Detection
So far, we have constructed the statistical texture atlas,

which is parameterized by mean texture attribute vector
V and covariance matrix vΣ of normal individuals. In this

1132

sense, the problem of lesion detection can be restated as
measuring how the texture attribute vectors of points in the
input subject image are similar or belonging to the
corresponding locations in the atlas. For simplicity, we use
Mahalanobis distance vE as the measurement.

III. IMPLEMENTATION
Graphics Processing Units (GPUs) have emerged as a

powerful platform for high-performance computation. They
have been successfully used to accelerate many scientific
workloads[11][12]. As mentioned in Section I, the
construction of statistical texture atlas is typically
time-consuming and the implementation should be optimized.
In practice, the former three operations, including
skull-stripping, rigid registration and Demons registration are
implemented in ITK platform, and only texture extraction has
been transplanted on GPU with CUDA. It is because: 1) ITK
is thread-parallel architecture and the program would also be
accelerated; 2) texture feature extraction is naturally data
independent and suitable for GPU implementation.

A. Programming Models on CUDA
CUDA is a general purpose parallel computing

architecture that leverages the parallel compute engine in
Nvidia graphics processing units (GPUs) to solve many
complex computational problems in a fraction of the time
required on a CPU. In CUDA, programs are expressed as
kernels, which have a Single-Program, Mutiple-Data(SPMD)
programming model. Applications that are executed many
times, but independently on different elements of the dataset,
can be isolated into a kernel that is running on GPU in the
form of many different threads. The CUDA Kernel runs
asynchronously on the GPU and executes many data-parallel
threads simultaneously.

B. Texture Extraction
As explained previously, in order to map an algorithm to

the CUDA programming environment, we should identify
data-parallel portions of the application, and isolate them as
CUDA kernels. According to the algorithm description below,
texture extraction operations are executed iteratively and
independently on different elements of the dataset. The target
dataset is stored in device Texture memory.

1: Down-sample images by applying Gaussian smoothing
2: Initialize ()s sV x to zero vector
3: repeat
4: for each pixel, i do
5: Compute local histogram
6: Compute geometric moments
7: Compute Canny edge strength
8: end for
9: until all resolutions are done

The GPU hardware allows for fast performance of

pixel-wise operations. To our delight, the major operations of

computing geometric moments of local histograms are
naturally pixel-wise and spatially independent. Meanwhile,
many steps in Canny edge detection procedure, such as
gradient finding, convolution, and non-maxima suppression
can be performed in parallel, too.

For our implementation, we give one thread to every pixel.
Algorithm 1 runs on the CPU while algorithm 2 runs on the
GPU.

Algorithm 1
CUDA_Feature(Image Data V, Width, Height)

1: Create point array A and bind it to two
dimensional texture memory T
2: Allocate Global memory F for saving GPU
results
3: for every point in parallel do
4: invoke CUDA_Feature_Kernal(F) on the grid
5: end for
6: Send results to CPU memory

Algorithm 2 CUDA_Feature_Kernal(F)

1: tid←getThreadID, bid←getBlockID
2: Compute point offset←bid*width+tid
3: for all the neighbors in the window of point
[bid,tid] do
4: Compute four features of point and put into
temp
5: end for
6: F[offset]←temp

Usually, a completed version of CUDA implementation

includes host code in CPU and kernel code in GPU,
corresponding to algorithm 1 and algorithm 2, respectively.
In practice, the host code is responsible for realizing IO
interface and procedure control, which is very similar with
ordinary standard C code. The major difference is that host
code might use some CUDA APIs to communicate with GPU
and invoke the computing procedure. In our implementation,
testing image is firstly read into CPU memory, and bind to the
texture memory, which could visit the image data by 2
dimensional index. Meanwhile, the attached cache of texture
memory tremendously reduces IO cost when accessing the
pixel data under read mode. When data is transferred to GPU,
kernel code is invoked for parallel computing. The most
important action in kernel code is to determine the thread
allocation. In our implementation, in order to optimize the
thread parallelism in the target GPU device, the original size
of testing images is 512×512. Then, 512 blocks are used, each
of which has 512 threads.

IV. EXPERIMENTAL RESULTS

A. Lesion Detection Results
In practice, we have collected 147 normal individuals’

brain HRCT volumes for statistical texture atlas construction,
and the slice thickness varies from 1mm to 3mm. With the
help of radiologists, one single slice is picked out at the

1133

similar location from each volume. After rigid and
deformable registration, these 2D slices have been
transformed into a normalized reference coordinate. Table I
shows the registration accuracy, in terms of average
correlation coefficient, average signal-to-noise ratio, and
average mean squared error. Fig4 shows the segmentation
results of three typical intracranial space-occupying lesions,
which are generated according to the Mahalanobis distances
of the corresponding pixels between atlas and sample images.

TABLE I REGISTRATION ACCURACY

ccR SNR MSE

ORIGINAL 0.8243 1.5074 3.94E+005
REGISTERED 0.9637 12.4518 40.5371

Fig.4. Lesion detection results

B. CUDA performance of Texture Extraction
Our implementation is running on a 1.2GHz Pentium 4

Dual Core, 1 GB RAM with Nvidia 8800GTX graphics chip
with 768MB on board, and using CUDA 1.1 under Microsoft
Windows XP SP2. For testing, we compared the performance
of texture extraction procedure of all the 147 sample images
on GPU and CPU. GPU implementation is written in CUDA,
while CPU version is written in standard C. Performance
results are shown in Table II. Detailed time consumption is
profiled in Fig. 5. Comparisons between CUDA and standard
C implementation demonstrate a significant speedup in GPU
against straight forward CPU functions.

TABLE II CUDA SPEEDUP
RESOLUTION GPU(S) CPU(S) SPEED UP

512×512 470.4 10772.16 22.9
256×256 264.6 5662.4 21.4
128×128 161.7 3411.9 21.1

TOTAL SPEEDUP 22.13

Fig.5. CUDA profile output

V. CONCLUSIONS AND DISCUSSIONS
We present a GPU-based accelerated detection method for

intracranial space-occupying lesions, using statistical texture
atlas. In our approach, local intensity histogram distribution
and Canny edge information are selected to characterize
statistical texture patterns of brain anatomy. Experimental
results support that Mahalanobis distance in feature space
effectively depicts the difference between the cross-region
mixed density lesions and normal tissues. Further more, we
have implemented a parallel computing scheme on CUDA to
accelerate the texture extraction procedure, which makes it
more applicable for large scale clinical applications. However,
it should be noted that this study has examined only 2D CT
images, and further implementations on 3D volumes will be
summarized in our next study.

ACKNOWLEDGMENT
The authors appreciate the support of Nature and Science

Foundation of China (project No. 60771007) and Natural
Science Foundation of Anhui Education Department (project
No. 2006KJ097A).

REFERENCES
[1] J. E. Bradley, B. Brian, “Computer-aided detection and diagnosis at the

start of the third millennium”, Journal of Digital Imaging, vol. 15, no. 2,
pp. 59-68, 2002.

[2] A. L. Gholipour, N. Kehtarnavaz, R. Briggs, et al, “Brain function
localization: A survey of image registration techniques”, IEEE Trans on
Medical Imaging, vol. 26, no. 4, pp. 427-451, 2007.

[3] C. Davatzikos, A. Genc, D. Xu, et al, “Voxel-based morphometry using
the RAVENS maps: Methods and validation using simulated
longitudinal atrophy”, NeuroImage, vol. 14, no. 6, pp.1361-1369, 2001.

[4] J. Ashburner, K. Friston, “Voxel-based morphometry- The methods”,
NeuroImage, vol. 1, no. 11, pp. 805-821, 2000.

[5] D. Shen, C. Davatzikos, “Very high-Resolution morphometry using
mass-preserving deformations and HAMMER elastic registration”,
NeuroImage, vol. 18, no. 1, pp. 28-41, 2003.

[6] K. Friston, A. P. Holmes, J. P. Poline, et al, “Statistical parametric maps
in functional imaging: A general linear approach”, Human Brain
Mapping, vol. 2, no. 4, pp. 189-210, 1995.

[7] S. G. Metha, J. Thomas, Y. Trivedi, et al, “Evaluation of voxel-based
morphometry for focal lesion detection in individuals”, NeuroImage,
vol. 20, no. 3, pp. 1438-1454, 2003.

[8] J. P. Thirion, “Image matching as a diffusion process: an analogy with
Maxwell’s demons”, Medical Image Analysis, vol. 2, no. 3, pp.
243–260, 1998.

[9] K. A. Ganser, H. Dickhaus, R. Metzner, et al, “A deformable digital
brain atlas system according to Talairach and Tournoux”, Medical
Image Analysis, vol. 8, no. 1, pp. 3-22, 2004.

[10] X. Zhong, D. Shen, C. Davatzikos, “Determining correspondence in 3D
MR brain images using attribute vectors as morphological signatures of
voxels”, IEEE Trans on Medical Imaging, vol. 23, no. 10, pp.
1276-1291, 2004.

[11] Pawan Harish, P. J. Narayanan, “Accelerating large graph algorithms
on the GPU using CUDA”, in IEEE International Conference on High
Performance Computing, Springer, pp.197-208, December 2007.

[12] S.S. Stone, J.P. Haldar, S.C. Tsao, et al, “Accelerating advanced MRI
reconstructions on GPUs”, Journal of Parallel and Distrivuted
Computing, vol. 68, pp. 1307-1318, 2008.

1134

	MAIN MENU
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order
	Themes and Tracks

