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 Abstract—Estimation of ventilation volume from 
dimensional changes of the rib cage and abdomen is of interest 
to researchers interested in quantifying internal exposure to 
environmental pollutants in the atmosphere. In this paper, we 
present different statistical regression models for estimating 
ventilation volume during free-living activities. The movements 
of the rib cage and abdomen were measured by piezoelectric 
sensor belts. Multiple linear regression as the calibration 
method was applied. Five regression models with different 
combinations out of thirteen features were developed and the 
performance of these models was compared through 
experimental study of 11 subjects. The effect of training 
approaches – model trained for each subject and for all subjects, 
and the effect of time intervals for computing features were also 
investigated. The results indicate that Model 2, combining 
respiratory features and breathing frequency, with a longer 
time intervals will lead to a higher accuracy. 

I. INTRODUCTION 
ONTINUOUS monitoring of respiration in free-living 
environments is potentially important for quantifying 

exposure to environmental particles in the air. Additionally, 
respiration measurement is a physiological response that 
increases with exercise and thus may be useful in estimating 
an individual’s level of physical activity. Unlike a 
conventional mask or mouthpiece that is burdensome to 
human test subjects in a free–living environment, 
non-invasive techniques have been examined. Respiratory 
inductive plethysmography (RIP), respiratory magnetometer, 
and piezoelectric sensors are three well known devices that 
have been used to estimate respiration. Specifically, these 
methods use sensing belts placed around the rib cage and 
abdominal region to estimate ventilation from the magnitude 
of dimensional changes of the belts during breathing [1] - [5]. 

In 1967, Konno and Mead showed that the respiratory 
system could be assumed as a simple two degrees-of-freedom 
system [6]. The volume changes of the whole respiratory 
system were approximated as the sum of volume changes of 
rib cage and abdominal compartments, which were related to 
the dimensional changes of the compartments measured from 
the strap assembly. To examine the relationship between 
ventilation volume and the dimensional changes, multiple 
linear regression has been used by a number of research 
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groups [7]-[9]. However, given that the human respiratory 
system is not a simple system, providing more variables for 
the prediction of ventilation may improve prediction 
accuracy. These variables include breathing frequency, 
products of breathing frequency and dimensional changes of 
the rib cage and abdomen respectively, height, weight, 
circumferences of the rib cage and abdomen. 

This study investigates different linear regression models 
for estimating ventilation volumes from data measured by 
piezoelectric sensor belts. A total of thirteen features, which 
have either a direct or indirect relationship with ventilation, 
were chosen, and five models were developed, based on 
different combinations of the features. The performance of 
each model is subsequently assessed and compared with each 
other through experimental study. 

II. EXPERIMENTAL PARAMETERS 

A. Subjects 
Eleven test subjects (5 male, 6 female) were recruited from 

students at the university. After verbal explanation of the 
experimental procedures, all subjects read and signed an 
informed consent document approved by the university 
Institutional Review Board. The characteristics of all subjects 
are shown in Table I. 

TABLE I 
SUBJECT CHARACTERISTICS (N = 11) 

Characteristics Mean±SD 
Age (years) 24.3±2.7 
Mass (kg) 67.7±12.3 
Height (cm) 171.2±8.6 
Body Mass Index (kg/m2) 23.2±4.6 

B. Experimental Sequence 
The subjects performed a continuous activity protocol in 

the exercise physiology laboratory at the University of 
Massachusetts Amherst. The test consisted of a rest period 
with subjects lying, facing up on a bed, three treadmill 
exercise conditions: slow walking (2.4 km/h), fast walking 
(4.8 km/h), jogging (7.2 km/h), and two other activities: 
sweeping floor and moving a 4.5-kg box. Table II presents 
the details of the test. Subjects performed each activity for 10 
minutes, followed by a 2-minute rest. Except for rest which 
was always performed first, the subjects completed the other 
five activities in a random order. Prior to the test, subjects 
were asked to lie down on a bed to rest for 10 minutes, in 
order to achieve a baseline metabolic rate. All the tests were 
performed in the morning, and the subjects were not allowed 
to have food for four hours before the test. 
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TABLE II 
EXPERIMENTAL SEQUENCE 

Activity Test Duration Description 
Resting 10 minutes Lying down, facing up 
Slow Walking 10 minutes Treadmill, at 2.4 km/h 
Fast Walking 10 minutes Treadmill, at 4.8 km/h 
Jogging 10 minutes Treadmill, at 7.2 km/h 
Sweeping Floor 10 minutes Laboratory 
Moving Box 10 minutes Laboratory, 4.5-kg box  

C. Data Acquisition System 
Piezoelectric crystal or film sensors have been commonly 

used for monitoring human respiration. The sensor is usually 
combined with an elastic belt whose output is proportional to 
the expansion of the belt. When encircling the rib cage and 
abdomen snugly at the level of nipples and umbilicus, 
respectively, the piezoelectric belt sensor assembly measures 
the chest and abdominal expansion associated with 
respiratory effort. 

Fig. 1 illustrates the configuration of the data acquisition 
system used. It includes a belt assembly (Piezo Respiratory 
Effort, Ambu Sleepmate) for ventilation measurement on test 
subjects, and a respiratory gas exchange system (Oxycon 
Mobile, Cardinal Health) that serves as the criterion measure. 
The sensitivity of the piezoelectric sensor is 30 μv/mm. The 
sensor belts were directly connected to an amplifier (AM503, 
Tektronix, Inc.) and the amplification gain was set to 1,000. 
The amplified voltage signals from both sensors were 
acquired by a 12-bit A/D converter (DAQCard-AI-16E-4, 
National Instruments), at a sampling frequency of 50 Hz. The 
volume transducer from the respiratory gas exchange system 
served as the standard reference. The respiratory gas 
exchange system is secured to the subject using an adjustable 
vest. The breath-by-breath respiratory data are collected 
through a facemask and then transmitted to a host laptop 
wirelessly. A pre-calibration of the system was performed 
before experiments. 

 
Fig. 1.  Schematic of the data acquisition system. 

III. DATA ANALYSIS 

A. Statistical Methods 
In order to estimate the ventilation volume, a relationship 

was established between the chest and rib displacement data 
obtained from the piezoelectric sensor belts and the 
ventilation volume. In general, regression analysis can be 
used for modeling the relationship between a dependent 
variable (response) y and one or more independent variables 
(predictors) x1, x2 … xp. The general regression equation is 

expressed as: 
( ,  )y f X β=          (1) 

where y is the response in space R1, 1y R∈ , X is a set of 
independent variables in a space RP, { }1 2, , , P

pX x x x R= ⊂ , 

β  are regression coefficients, { }0 1 2, , , , pβ β β β β= , and f 

represents the regression function which maps from space 
RP+1 to R1, 1 1:  Pf R R+ → . 

The current study is based on a linear mapping for the 
estimation of ventilation volume. This is expressed as: 
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where y is the estimated ventilation volume, xi is the ith 
variable data set obtained from the sensors, p is the number of 
independent variables, and n is the number of data in each 
variable data set. 

B. Features 
Application of the linear model as shown above requires the 

determination of the independent variables. The two 
degrees-of-freedom model developed in [6] assumed that the 
changes of ventilation volume are equal to the sum of the rib 
cage and abdominal volumes, which are related to the 
dimensional changes of the two body parts. The relationship 
can thus be expressed as the following: 

TV a RC b AB= ⋅ + ⋅         (4) 

where VT represents the ventilation volume, a and b are 
coefficients, RC and AB are two independent variables that 
represent the dimensional changes of the rib cage and 
abdomen, respectively. Based on this assumption, a number 
of studies [7]-[9] have been performed by using multiple 
linear regressions. Considering that the human respiratory 
system is a complex system, multiple variables associated 
with the ventilation volume are needed in order to improve 
the accuracy of the ventilation estimation. In this study, the 
following three types of features are utilized for this purpose: 

1) Respiratory features (RF), which have direct 
relationship with the ventilation volumes; 

2) Frequency features (FF), which are related to the 
respiratory frequency; 

3) Body features (BF), which may be related to the 
ventilation volume. 

A total of thirteen features were chosen as shown in Table 
III. For RF, there are six features, including the 10th and 90th 
percentiles of an abdominal belt signal within a certain time 
interval (feature F1 and F2), 10th and 90th percentiles of a rib 
cage belt signal within the same time interval (F3 and F4), the 
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differences between 90th and 10th percentiles of abdominal 
signal (F5) and that of the rib cage signal (F6). These six 
features represent stable estimates of the dimensional changes 
in abdomen and rib cage respectively, which are directly 
related to ventilation volumes. When computing these 
features, five different time intervals were used, i.e., 20, 30, 
40, 50, and 60 seconds in order to investigate the effect of 
time intervals on the estimation of ventilation volume. These 
time intervals were chosen empirically. 

Breathing rate may also reflect breathing volume. Thus, 
three breathing frequency related features consisting of FF: 
breathing frequency (feature F7) estimated from the sensor 
belt using spectrum analysis, product (F8) of breathing 
frequency and feature F5, product (F9) of breathing frequency 
and feature F6. The above features were computed after tissue 
artifact in each of the sensor signals were removed by the 
method of empirical mode decomposition [10]. 

It was assumed that features from the subjects’ 
characteristics may be related to the ventilation volume, e.g. a 
subject’s height may be related to ventilatory volume. Thus, 
four body size features, including the circumferences of 
abdomen and rib cage (feature F10 and F11), height (F12) and 
weight (F13) were examined.  

TABLE III 
FEATURES 

Feature 
Type 

Feature 
No. Description 

RF 

F1 10th percentile of abdominal signal 
F2 90th percentile of abdominal signal 
F3 10th percentile of rib cage signal 
F4 90th percentile of rib cage signal 
F5 F2 minus F1 
F6 F4 minus F3 

FF 
F7 Breathing frequency  
F8 F7 times F5 
F9 F7 times F6 

BF 

F10 Circumference of abdomen 
F11 Circumference of rib cage 
F12 Height 
F13 Weight 

C. Regression Models 
Since some of the features are linear combinations of other 

features, it is not possible to include all the thirteen features in 
a single regression model. In this study, the following five 
models (Table IV) were developed to evaluate the 
performance of feature combinations on estimating the 
ventilation volume. 

Model M1 is based on Konno and Mead’s model in Eq. (4) 
and serves as the comparison basis for the other four models. 
We include breathing frequency – feature F7 in all the other 
four models as we assumed that the breathing frequency will 
be highly related to the ventilation volume.  

The least squares algorithm is used to estimate, or train, the 
multiple linear regression models that estimate ventilation 
volume as a linear function of the features. The quality of the 
estimated models is evaluated with root mean square error 
(RMSE), which is the square root of the average of the 

squared differences between the model predictions of 
ventilation volume and the measured volumes. 

TABLE IV 
REGRESSION MODELS 

Model No. Feature Combination 
M1 F5, F6 
M2 F1, F2, F3, F4, F7 
M3 F5, F6, F7 
M4 F7, F8, F9 
M5 F7, F10, F11, F12, F13 

The models are trained in two ways: a separate model was 
trained for each subject using only that subject’s data, and a 
single model was trained for all subjects using all the data. In 
each approach, the estimation performance is assessed with 
the leave-one-out cross validation. Cross-validation estimates 
of RMSE provide valid estimates of how the models would 
perform if they were applied to different data under similar 
conditions. In the subject specific models, the model is 
trained using all but one of the data points for a specific 
subject, and RMSE is calculated for the left out data point. 
That procedure is repeated for all the data points and all the 
subjects, and the average RMSE is reported. In the case of the 
single model for all subjects, the model is trained using all but 
one subject’s data, and RMSE is calculated for the left out 
subject. Each subject is left out in turn, and the average 
RMSE is reported. 

IV. RESULTS 
Fig. 2 shows the results obtained from the two training 

approaches for all the five models. As seen in Fig. 2, except 
for the results from subject No. 10 and No. 3 using model M5 
with 60-second interval, the results using the model trained 
on one subject are consistently better than that from all 
subjects. The overall absolute bias is 0.159 L (95% 
confidence interval: 0.142–0.175 L) using the model trained 
from one subject, and 0.179 L (95% confidence interval: 
0.153-0.206 L) using the model trained on all subjects. And, 
the average of the overall RMSEs is 0.214 L (95% confidence 
interval: 0.185-0.244 L) using the model trained on each 
subject, and 0.269 L (95% confidence interval: 0.234-0.296 
L)  using model trained from all subjects. 
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Fig. 2. Performance comparison on training approaches. 
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Fig. 3 shows the performance comparison of the five types 
of models. Compared with the traditional model M1, M2 
reduces the error by about 20% when the model was trained 
for each subject.  

The effect of different time intervals is shown in Fig. 4. 
The accuracies of ventilation estimation increase when longer 
time intervals are used. However, the accuracies are not 
significantly increased: compared with 20-second interval, 
the error of 60-second interval is reduced by about 8%. The 
result indicates the impact of selections of time intervals is 
less significant than the choice of regression models. 

Feature Model
M1 M2 M3 M4 M5

(a) Model trained for each subject

(b) Model trained for all subjects
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Fig. 3. Performance comparison on feature models. 

V. CONCLUSION 
The accuracy of ventilation volume estimation has shown 

to be affected by various parameters. To enable quantitative 
analysis, a total of five regression models were developed for 
the estimation of ventilation volume by using multiple linear 
regressions. Through experimental study, the model M2 has 
the highest accuracy out of the five models, and it reduces 
error by about 20% as compared with the commonly used 
model M1. Our results show that the model trained for all 
subjects produced a 25% higher error than the models trained 
for each subject. Also, a longer time interval generally leads 
to a higher accuracy, although the effect is less significant 
than that of the regression models.  

The linear regression method is computational efficient 
and thus can be implemented for online monitoring. 
However, given the complexity and inherent nonlinearity 
associated with the human respiratory system, further studies 
are being conducted to investigate the performance of 
nonlinear models on the estimation of ventilation volume. 
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Fig. 4. Performance comparison on time intervals. 
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