
  

  

Abstract—This paper proposes a new technique to estimate 

single joint impedance during postural tasks. The method is 

based on a reassigned spectrogram and can track the frequency 

modulation of biomechanical system after perturbations. 

Compared to the existing techniques, this procedure 

successfully estimated rapidly time varying impedance 

parameters in a faster and equally accurate way. For this 

reason it can be an optimum tool to easily estimate limb 

impedance of stroke patients, before, during, and after robot 

therapy sessions, without interfering with the delivered 

treatment. 

I. INTRODUCTION 

ECHANICAL impedance is considered one of the 

main parameters for controlling human movement both 

during posture and reaching tasks. Monitoring the impedance 

on impaired subjects, can quantitavely identify the 

interaction between the patient and the environment to 

monitor the progress in rehabilitation treatment. To estimate 

impedance, several methods have been proposed; however 

the majority of these techniques imply the measure of 

impedance during steady state conditions [1-5]. When the 

condition is transitory, the assumption of ergodicity is often 

used [7-9]; thus numerous repetitions of the movement are 

necessary for estimation. Depending upon the level of 

impairment, the number of movement repetitions could result 

in fatigue and exceed the maximal performance of the 

subject. 

Here, a new technique is proposed for the estimation of 

impedance, both during steady and transitory states. This 

technique is based on the principles of modal testing [10] 

and uses a force pulse to estimate the mechanical behavior of 

the upper limb by means of a reassigned spectrogram 

operating in a joint time-frequency domain [11]. 

This paper presents a set of postural task simulations 

where both damping and stiffness are non-linearly time-

varying. The technique presented neither requires the 

assumption of steady state system nor of ergodicity. 

Therefore, the estimation of impedance can be performed on 
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the same set of data at different time instants, which quickens 

the experimental procedure. Ideally, only one force impulse 

is necessary to obtain the stiffness estimation for different 

instants. As a result, this procedure is quite fast and suitable 

for stiffness and damping estimation of impaired subjects, 

which otherwise could be problematic because of the long 

time required by other methods for the acquisition of a 

complete data set.  

II. METHODS 

A. The inverse problem 

The mechanical features of the forearm are supposedly 

nonlinear and higher than second-order; however, a good 

approximation of the system behavior is given by a linear 

time-varying harmonic oscillator, namely: 

 

( ) ( ) ( ) 0),,,(),,(),( =++ ttKttBttI θθθθθθθθθ &&&&&&&  (1) 

 

whose solution in the time domain can be expressed in terms 

of instantaneous amplitude and instantaneous phase: 

 

( ) ( ) ( ))cos( ttAt ϕθ ⋅= . (2) 

 

In (1), ( )tθ  is the variation of elbow angular displacement, 

and I , B , and K  are the coefficients of inertia, damping 

and stiffness respectively. 

The instantaneous pulsation of the system is defined as the 

derivative with respect to time of the instantaneous phase: 

 

( ) ( )tti ϕω &=  (3) 
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TABLE I 

GEOMETRY AND INERTIAL PARAMETERS 

Symbol Denomination Value 

l1 Upper arm length 0.4 [m] 
r1 Upper arm center of 

mass 
0.17 [m] 

m1 Upper arm mass 2.5 [kg] 
I1 Upper arm moment of 

inertia about the center 

of mass 

0.02 [kg m
2
] 

I Upper arm moment of 

inertia about the center 

of rotation 

0.2 [kg m
2
] 

Inertial and geometrical parameters used in the simulation. 

Parameters were obtained from a subject using a regression equation 

proposed in [6]. 
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To estimate stiffness and damping with the proposed 

procedure, the inertial parameters have to be known prior the 

application of the method. Under the hypothesis of an under-

damped system, the values of the coefficients B  and K  are 

determined from the instantaneous pulsation ( )tiω  during an 

impulse response. This process is known as the inverse 

vibration problem.  

B. Biomechanical model 

We implemented Equation 1 within a Simmechanics 

(Mathworks) simulation where a model of the forearm was 

defined as one link with known geometry and inertial 

parameters (Table I). Considering the elbow as the origin of 

the reference system, the x-axis was directed laterally and the 

y-axis ventrally. At time stI 0=  the longitudinal axis of the 

forearm was aligned with the y-axis, and a force pulse (5N, 

20ms) was applied along the x-axis. The system was tested 

for the period stt IF 25.1=−  with a sampling frequency 

HzFs 4000=  in three operating conditions. First, we 

studied the system during steady state condition with 

constant stiffness and damping; hence, the two parameters 

were represented as time-varying sigmoidal profiles. A 

generic sigmoidal function is as follows: 
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The profile parameters for damping and stiffness can be 

found in Table II. 

C. Impedance Estimation 

To estimate the impedance parameters of the proposed 

system from the impulse response signal, Equation 1 can be 

written in the following convenient forms: 
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If the instantaneous pulsation given by (3) is not constant, 

then the normalized stiffness and damping ( )t2η  and )(tΓ  

are time-varying and can be estimated as follows [12]: 

i

it
ω

ω
σ

2
)(

&
−−=Γ  (4) 

( ) σ
ω

ωσ
σωη &

&
−++=

i

i
it

222
 (5) 

where 

( ) ( ) ( )
( )tA
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d
t

&

== lnσ  (6) 

Recalling that the transformation between instantaneous 

pulsation and instantaneous frequency is 

 

( ) ( )tft ii ⋅⋅= πω 2 , (7) 

 

analyzing the impulse response of the system in the time-

frequency domain allows us to identify the variation of 

instant amplitude ( )tA  and instantaneous frequency ( )tfi  

and therefore the estimation of stiffness and damping in the 

time domain (Fig.1).  

A

B

C

 
Fig. 1. Spectrogram (A), and reassigned spectrogram (B) of condition II 

in table II. The thick black line in B and C represents the average of the 

RS signal obtained using a bidirectional averaging filter with a 0.14s 

window. 

TABLE II 

STIFFNESS AND DAMPING TIME PARAMETERS 

 
Condition Stiffness [Nm/rad] Damping [Nms/rad] 

I  30 0.3 

II 7=ξ  100)(35)( == FI tKtK  35.1)(35.0)( == FI tBtB  

III 30=ξ  100)(35)( == FI tKtK  35.1)(35.0)( == FI tBtB  

 

Stiffness and damping parameters to be inserted in Equation (4) to determine 

the time profile imposed in the simulation as a function of time [s]. 
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D. Time-Frequency approach 

Equation (1) is a model for a time-variant system whose 

solutions can be found both in time and frequency domain. 

When assuming the system is stationary, classical Fourier 

transform can be used to approach the problem in the 

frequency domain; nevertheless, such transformation does 

not associate with any time instant. If the system is not 

stationary, signals shall be convolved with a set of 

elementary functions whose feature is to be simultaneously 

localized both in the time and frequency domains. These 

elementary functions are commonly known as “windows”, 

and a convolution of these functions along a time series is 

called “Short Term Fourier Transform” (STFT). A 

spectrogram is a representation of the signal convolution 

with the same type of window functions positioned in 

subsequent instants in the time series. The spectrum of the 

signal at one instant is calculated as the average of all STFTs 

enclosing that instant in the window functions. 

To calculate the spectrogram, we used a 0.75s Kaiser 

window, with β=3. Convolving the window every 2.5ms, we 

obtained a resolution in frequency and time of 1.33Hz and 

0.0025s. Notice that because of a notorious characteristic of 

STFTs known as the “uncertainty principle”, both time and 

frequency domains of a spectrogram have lower resolution 

than the homologous originally sampled signal [11]. To 

overcome this drawback, an innovative method known as 

reassigned spectrogram (RS) was used to track the variation 

of ( )tf i  after the perturbation. This method is able to track 

the frequency peaks of existing spectrograms calculating the 

partial derivatives of the STFT phase, with respect to time 

and frequency. In contrast to other commonly used methods, 

locally stationary approximations of the signal were not 

assumed. Based on a re-mapping algorithm, RS methods can 

provide “super-resolution” in both time and frequency, 

giving much better accuracy than the Heisenberg-like 

uncertainty of STFT [11]. As depicted in Figure 1, the use of 

RS allows us to clearly identify the time variation of the 

system’s natural frequency despite some identifiable 

computational artifacts. 

III. RESULTS 

The stiffness and damping time-profiles were estimated 

for the three conditions in Table I. Typical results of the 

estimations are represented in Figure 2. Profiles present 

bigger errors at the beginning and final part of the time series 

because of the procedure necessary to compute the STFT 

spectrogram. The convolution of the signal discharged an 

amount of data, at the beginning and at the end of the signal, 

equal to the duration of half a window. 

To test the accuracy of the estimation technique and the 

robustness to external disturbances, the simulated data were 

corrupted with zero-mean Gaussian noise. The signal-to 

noise ratios (SNR) in terms of the root mean square (RMS) 

of the signal were 20 dB and 10 dB respectively. 

We calculated the RMS of the percentage error along the 

stiffness and damping profile with respect to the imposed 

parameters of the simulation. To test the robustness of the 

method, each simulation was performed 100 times, and the 

cumulative RMS error was calculated. 

Figure 3 depicts the cumulative RMS error for the 

 
Fig. 2. Comparison between imposed and estimated stiffness and damping 

profiles. Considering the stiffness profile of Table II, the  curve with the 

sharpest variation  corresponds to condition III. Dotted line refers to the 

estimations, while solid lines represent the imposed profiles. 

I I

I  
III

 
Fig. 3. Cumulative RMS error of for the stiffness profile. From top to 

bottom, the roman numerals on the top-left corner refer to the different 

stiffness profiles in Table II. For each repetition of the simulation, the 

percentage error along the stiffness profile was calculated; hence, the 

cumulative RMS of the percentage error was calculated after each 

repetition.  

1284



  

stiffness estimation. For case I (stationary) the error for 

SNR=inf is below 0.4%. The technique is robust with respect 

to noise, since the power of the noise is distributed in the 

whole time-frequency plane (Fig.1C). Stiffness cumulative 

error in case III was slightly above 7%, even though the 

variation of stiffness form 35)( =ItK  to 100)( =FtK  

occurred in approximately 100ms. 

The estimation of the damping parameter was slightly less 

accurate since the evaluation of ( )tσ  was performed using a 

logarithmic scale, and was therefore less sensitive to small 

variation.  

IV. CONCLUSION 

This work presented a new method for the estimation of 

stiffness and damping in non-stationary mechanical systems. 

Specifically, an application to determine the impedance of a 

single degree of freedom forearm posture with time-varying 

stiffness has been proposed. Results of simulations show that 

this method is appropriate to estimate rapidly varying 

parameters as the modulation of mechanical properties in the 

human limbs. 

A second order system was considered, for comparison 

with the literature. Furthermore, the procedure is very robust 

when using noise corrupted signals. 

In the ideal case only one perturbation allows estimation 

of the entire profile of impedance. Thus, this procedure is 

fast and easy to use with impaired subjects. Specifically, this 

method can be used before, after, and during sessions of 

robot therapy for estimating the stiffness variation without 

interferences with the treatment. 

Further development of this technique will include the 

estimation of impedance parameters in multiple degrees of 

freedom cases such as a double pendulum model of the 

whole arm. Additionally, taking advantage of the capability 

to study non-stationary system, the technique could be 

employed to study impedance profiles during reaching 

movements. 
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Fig. 4. Cumulative RMS error of for the damping profile 
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