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Abstract— The objective of this exploratory study was to
develop signal processing methods for assisting in the diagnosis
of arteriovenous fistula stenosis on patients suffering from end-
stage renal disease and undergoing haemodialysis treatments.
The proposed method is based on the classification of vessels
sounds utilizing parameter extraction from wavelets transform
coefficients. The coefficients energy of selected scales (frequency
bands) were fed to a support vector machine based system for
classification. Results suggested that this technique can be useful
for diagnosis purposes to physicians during the auscultation
procedure.

I. INTRODUCTION

Hemodialysis is a common treatment for patients suffering

from end-stage renal disease. During this treatment the blood

is purified from waste products and excess fluid is removed

by using a dialyzer. To reach the blood, a vascular access,

usually placed on one of the patients forearms is used to

insert the needles coming from the dialyzer. A very common

type of vascular access is the so-called arteriovenous (AV) fis-

tula. The fistula is made through a surgical operation during

which an artery and a vein in the arm are connected together.

The connection point is referred to as an anastomosis and

is often located near the patients wrist or elbow. The state

of the fistula may deteriorate in course of time. The most

common form of fistula failure is venous stenosis [1] ,[2],

[3].

A stenosis is an abnormal narrowing of a bodily canal

which can be caused by calcification or when the vessel’s

wall is exposed to abnormal physical stress like turbulence

or high blood pressure. When exposed to physical stress the

wall gets thicker as a response and new wall material is

built up on the inside of the vessel, narrowing the lumen.

When the dialysis becomes inadequate as a result of too

low blood flow the fistula must be revised and remedied.

An early detection of stenosis is desirable since it permits

their correction prior to total occlusion and thereby prolongs

the life of the fistula. It has been reported that turbulence

related to stenosis of vessels create audible sounds due to the

vibrations on the surrounding structures, that can be analyzed

to provide information about the severity of the blockage [4].

Though Doppler ultrasound and angiography (X-ray) ex-

amination are widely used in AV fistula diagnosis, auscul-
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tation is first performed by physicians to evaluate its func-

tionality. To help clinics, the National Kidney Foundation

(US) has published guidelines for the vascular access . They

state that physical examination of the fistula (monitoring)

should be performed weekly and should include inspection

and palpation for pulse and thrill at different sites of the

fistula [1], [2]. The clinician can also use a stethoscope to

listen for sounds originating from the fistula, called bruits.

Utilizing the advances in signal processing, diagnostic tools

can be developed to help physicians in diagnosing fistula

state so that frequent referrals to alternate expensive tests

such as Doppler Ultrasound may be reduced.

Phonoangiography (recording of sound from vessels) is a

non invasive, low cost technique that can be used with suc-

cess for monitoring the vessels functioning. A considerable

amount of research work have been done in this area for

diagnosis purposes, as in coronary artery and carotid artery

disease to mention some [4], [5].

The research results have shown that stenosis has two basic

acoustical effects: a general increase in the sound level and

an introduction of new high frequency components in the

power spectra. The changes in frequency are dependent on

the distance from the stenosis and its severity.

Literature reports the use of the Wavelets Transform for

processing of phonocardiography signals due to the highly

non stationary nature of these signals [4]. The introduced

method of classifying arteriovenous fistula stenosis is based

on parameter extraction from the coefficients of the Wavelets

Transform of the recorded sounds. After calculating a re-

duced set of features obtained from those coefficients, a

support vector machine is used for classification. In may

applications the support vector machines have shown a good

performance, better than other traditional learning machines

such as neural networks and have been used as powerful

tools to solve classification problems as they provide a good

generalization capacity.

II. METHODOLOGY

A. Data and patients

The data set used in this work, consisted of record-

ings from 8 patients (labelled K1 to K8 here) undergoing

haemodialysis treatment that were collected at the Depart-

ment of Clinical Physiology, Lund University Hospital [6].

As a measuring device, a microphone attached to a stetho-

scope head was used during the recording sessions. Signal

acquisition was performed using the BIOPAC TM, BP100

system.
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(a) (b)

Fig. 1. Main recording sites. (a) forearm (b) upper arm.

The recorded signals vary in amplitude; gains of 50 and

200 were set depending on signal strength, the time duration

of the signals is about 10 seconds. A sampling frequency of

10050 Hz was selected during all recording sessions.

The recordings were made at several sites around the

fistula. In patients with stenosis in some region, additional

recordings were made on the areas where it was present. The

main sites are located at the anastomosis (site 1) and some

centimeters downstream (sites 2 and 3) as shown in Fig 1.

B. Signal Processing

The signals were firstly normalized in amplitude to make

fair comparison since gains are different and the signals

at some locations are stronger and also present different

strength from patient to patient. A high pass filter with a

cut off frequency of 40 Hz was used to remove base line

wander and other artifacts. To obtain zero phase distortion,

after filtering in the forward direction, the filtered sequence

was then reversed and run back through the filter. Down

sampling was applied to the signals to reduce sampling rate

to a value of 2000 Hz, which is convenient for the scale

selection used during wavelet analysis.

1) Segmentation: Portions of period durations around the

peaks are to be used in the analysis (see Fig. 2). Previous

works have shown that the turbulent sounds are closely

related in the time domain to the peak of the blood flow

waveform as in [7] where the partially occluded femoral

artery of a dog was used.

Peak detection was performed as follows: Homomorphic

filtering, was first applied to obtain the input signals en-

velope. A low pass filter with a cut off frequency of 5

Hz was then applied to smooth the noisy envelope, this

smoothed envelope is then used to find signal peaks. To avoid

false peak detection a minimum inter peak distance of 0.4s

was set as lower limit. Interquartile distance is used here

as a selection criterion: Accepted period lengths are period

lengths with durations Ti inside the interval Q1−1.5∗ IQR≤

Ti ≤ Q3 +1.5∗ IQR, where Q1, Q3, IQR are the first quartile,

third quartile and the interquartile range respectively. The

peak indexes belonging to the accepted periods, are used

finally to perform the segmentation of the input signals. The

TABLE I

WAVELET DECOMPOSITION

Detail Frequency
range[Hz]

Time Resol.[ms], Fs=
2000

1 500 - 1000 1

2 250 - 500 2

3 125 - 250 4

4 62.5- 125 8

selected periods are denoted xi(n)
2) Wavelet decomposition: Several results have reported

frequency peaks in the region of 300 to 500 Hz [5], 200 to

800 Hz [7] , and between 250 to 1000 Hz [8] in the sound

recording from stenotic vessels.

Although most of the experiment carried out in previous

works were mainly devoted to the study of stenosis in the

carotid and coronary arteries, we have used these results

as a starting point. The approach used here is to select

appropriated scales in such a way that these frequency peaks

fall into some of the selected frequency bands. In order to

accomplish this, 4 levels of decomposition were selected. As

we are using a sampling frequency of 2000 Hz, the frequency

ranges for the different scales are as shown in table 1.

Several types of wavelets were tested (Daubachies 4,

Daubachies 6, Coifflet 1) yielding no significant differences

on the results. Daubachies type 4 wavelets were utilized for

the results shown here. It was expected that turbulent sounds

caused by stenosis wolud produce more energy content in

some of the frequency bands of the recorded signals spectra

which then could be used for discriminating purposes.

3) Parameter Extraction: Every selected period x i(n)
coming from the segmentation step was then normalized to

have unit energy, that is,

xn
i (n) =

x(n)

(∑nxi(n)2)
1
2

(1)

Fig. 2. Example of the segmentation process. The selected region is marked
by the black line on top of the signal. A spectrogram is included to visualize
the time-frequency signal properties.
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TABLE II

SIGNALS FROM PATIENT K2

Signal Site Avg.Cyc. duration [s] cycles Patient

1 4 0.58169 16 K2

2 5 0.58285 15 K2

3 4 0.57646 16 K2

4 5 0.59502 15 K2

Four wavelets coefficients were then calculated for each

selected period of the recorded sample. The features to be

extracted from the wavelets coefficients d i(n) were the scale

energies SEi defined as,

SEi = ∑di(n)2 (2)

The magnitude of the coefficient energies presented a high

dynamic range; a (base 2) logarithmic transformation was ap-

plied before the classifying step to improve the performance

of the classifier.

4) Feature selection and Classification: Principal Com-

ponent Analysis (PCA) and the sequential forward selection

(SFS) algorithm were helpful in selecting the best features

from the initial set of four energy coefficients. For the sake

of simplicity we restricted ourselves to retain only the 2

most information carrying features; SE1(n) and SE2(n) were

found to be the best selection. This seems to be reasonable

since these coefficients contain high frequency information

and that region is where the turbulence energy is expected

to be located.

The Support Vector Machine (SVM) is a useful technique

for data classification. A classification task usually involves

training and testing data which consist of some data in-

stances. Each instance in the training set contains one target

value (class labels) and several attributes (features). The goal

of SVM is to produce a model which predicts target value

of data instances in the testing set which are given only the

attributes.

A SVM classifier implemented using a MATLAB TM,

toolbox [10] was used here to classify the logarithmic

transformed normalized scale energy vectors of the wavelets

coefficients into two groups: Stenotic (’s’) or Non stenotic

(’n’).

III. RESULTS AND DISCUSSION

One interesting case among the patients that participated

in the recording sessions is that of patient K2, who developed

stenosis in the fistula, this condition was remedied by balloon

dilatation afterwards. The recording sessions for this patient

provide a valuable before-and-after case. The segmentation

of these four signals is summarized in table 2. Signals 1 and

3 corresponds to the case after angioplasty and 2 and 4, to

the before angioplasty case.

In Fig. 3 logarithmic regression plots of the coefficient

energy per scale for both before and after angioplasty record-

ings from that patient are shown. It can be seen from the

graph that the behavior of the coefficient energies varies from

1234
−9

−8

−7

−6

−5

−4

−3

−2

−1

0

Average coefficient energy per scale

Scale

l
o
g
2
(E

2 i
)

 

 

β1 = 2.5278

β2 = 0.71262

Case I Non stenotic segment signal

Case II Stenotic segment signal

Regression line for case I

Regression line for case II

Fig. 3. Plot of the base 2 logarithm of the average energy per scale and
line regressions for a stenotic and non stenotic case. As it can be seen from
the graph the energy content is higher at lower scales (higher frequencies)
for case II.

the stenotic and non stenotic case. In the former the energy

content in the high frequency region (lower scale) is high

compared to the non stenotic case. This is similar to the

finding in [9] where the coefficients variance is considered

in the context of fractal analysis of turbulent flow.

Using the four signals of table 2 we obtained a total of

62 periods and their corresponding scale energy vectors.

Cross validation was applied to this set for measuring the

performance; a number of periods randomly chosen is used

for training the SVM and the remaining periods are used for

testing. Ten-fold, six-fold and leave-one-out cross validation

were applied. The correct classifications rates of stenotic

cases were 98.7 %, 98.6% and 98.5% respectively.

As can be seen from Fig. 4 data appear to be linearly

separable so a linear kernel with a regularization parameter

C = 0.1, was finally selected.

These rates were rather optimistic, and could reveal over-

training. A validation was performed on the signals from the

remaining patients K1, K3, K4, K5, K7, K8 (sounds signals
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Fig. 4. SVM classification.
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from K6 were rejected due to poor quality). Every signal

was segmented into periods, then the classifier was applied

to every single period of the signals under examination. To

label a signal as coming from a stenotic segment recording,

its amount of periods classified as ’stenotic’ should be larger

than 80%. The same apply to the ’non stenotic’ case. Using

this rather arbitrary approach a result of 83% of correct

detection was obtained, this is probably due to the small

set for training and also that the signals used for training the

classifier came from only one patient. It was also noticed

that some recordings coming from patients classified as ’non

stenotic’ had spectra with significant power levels above 400

Hz which led to classify them as stenotic. This probably

suggest that frequency bands should be analyzed is shorter

steps (more scales). Additional attention should be pay to

the recording sites in order to decide which are the best

locations.

IV. CONCLUSIONS AND FUTURE WORKS

In this report we used wavelets transforms to study the

recordings from stenotic and healthy vessels. The energy

levels found at different frequencies or scales can be used

to discriminate between these two cases. The energy of the

detail coefficients at two selected scales were used as the

features to be used for a linear classifier. The percentage of

correct selection, in the sample test was about 83%. However,

a definitive conclusion cannot be drawn until more data are

available for training and testing.

A future measuring campaign is foreseen where more data

will be available and when these results are going to be

reviewed.
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