
  

  

Abstract—Resting tremor (RT) is one of the most frequent 
signs of the Parkinson’s disease (PD), occurring with various 
severities in about 75% of the patients. Current diagnosis is 
based on subjective clinical assessment, which is not always 
easy to capture subtle, mild and intermittent tremors. The aim 
of the present study is to assess the suitability and clinical value 
of a computer based real-time system as an aid to diagnosis of 
PD, in particular the presence of RT. Five healthy subjects 
were asked to simulate several severities of RT in hands and 
feet in three static activities. The behaviour of the subjects is 
measured using tri-axial accelerometers, which are placed at 
four different positions on the body. Frequency-domain 
features, strongly correlated with the RT activity, are extracted 
from the accelerometer data. The classification of RT severity 
based on those features, provided accuracy 76%. The real-time 
system designed for efficient extraction of those features and 
the provision of a continuous RT severity measure is described. 

I. INTRODUCTION 
HE parkinson’s disease (PD) is a disorder of certain 
nerve cells in the part of the brain which produces 

dopamine. These nerve cells break down, dopamine levels 
drop and brain signals which are responsible for the 
movement become abnormal. PD usually begins in the 
middle or late life (after age 50). It progresses gradually for 
10-15 years. This results in more and more disability. 
Patients suffering from PD present major clinical 
abnormalities of movement like resting tremor, rigidity, 
bradykinesia and postural instability [1]. 
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Resting tremor (RT) is the second most common sign of 
PD, after bradykinesia [1]. It is usually the first symptom 
noticed by the patient or by the family members; it is often 
the direct cause of the visit to the physician. In the early 
stage of the disease, RT is visible in the distal part of the 
limb (fingers, hand) and it gradually involves the whole limb 
thereafter. The cause of RT in PD has not been explained 
unequivocally. It is suggested that some areas responsible 
for the generation and inhibition of RT are located within the 
thalamus, while the amplitude and the frequency of RT are 
modulated at the level of the spinal cord and peripherally 
[1]. 

RT has a number of characteristics that make it easy to 
differentiate from other causes of tremor: it is slow with 
frequency of 3.5-7.5 Hz [1] and affects asymmetrically 
upper and lower limbs [1,2]. On the other hand, the presence 
and severity of RT can change during the day and as such, 
detection, assessment and following the changes of these 
signs during daily activities are of great interest [2]. 

Currently assessment of RT is mainly clinical, based on 
subjective methods, such as clinical scales (Unified 
Parkinson’s Disease Rating Scale, Schwab and England 
Activities of Daily Living Scale, Hoehn and Yahr scale, and 
Webster scale) [1,2] and assessment of hand-writing or 
drawing of an Archimedes spiral [2]. Although administered 
under clinician observation, these largely subjective scales 
lack validation against actual RT amplitude. Furthermore, 
the coarse resolution of the ratings is insufficient for 
assessing minute changes in RT severity. Finally, the extent 
of inter-clinician and inter-subject rating variability is 
unknown [1,2]. 

Several researchers have proposed objective methods to 
detect and quantify RT [2-13]. More specifically, 
quantification of RT has been achieved by numerical 
methods such as time-domain analysis [3,4], spectral 
analysis [4,5], time-frequency analysis [6] and nonlinear 
analysis [4]. Recently, there has been a growing interest in 
applications of body-fixed sensors (BFS) [7] and in 
particular kinematic sensors for long-term monitoring of PD 
patients [3,8]. Several groups have used accelerometry [5,8], 
electromyography (EMG) [9], computer tracking [10], 
digital tablets [11], infrared video cameras [12] and laser 
transducers [13] in order to objectively assess RT. All these 
solutions have demonstrated limited usability in clinical 
settings due to deficiencies in wearability, fidelity, and 
flexibility.  
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In this study, we report the first results obtained from an 
easily applicable system using accelerometers. It is based on 
frequency-domain features and artificial neural networks 
(ANN). Using simulated data for the severity of RT obtained 
by patients, our results indicate that the identification of 
different severities of RT in several static activities is 
feasible. This system can be employed for clinical diagnosis 
of Parkinsonian tremor patients as it can provide with real-
time quantitative assessment of the RT severity. 

II. MATERIALS AND METHODS 

A. Experimental Setup 
In this study, five subjects, two males (aged 31 and 28 

years) and three females (aged 31, 27 and 44 years) were 
enrolled. All the subjects are medical doctors in the 
Department of Neurology at the University Hospital of 
Ioannina with experience in PD and movement disorders, 
and agreed to participate in the study voluntarily. Subjects 
were asked to simulate Parkinsonian RT with a severity of 1 
to 4 accordingly to the definition for RT severity in their 
Unified Parkinson’s Disease Rating Scale (UPDRS) [1,2].  

Four accelometers were placed on the right and left 
forearm, and on the right and left chin. The recordings were 
made consecutively starting first with a period with the 
tested limb resting and presenting no activity. Then a RT of 
severity 1 was simulated followed by a period of 
rest/inactivity, then a tremor of severity 2 was simulated, 
followed by rest, then severity 3, rest and finally severity 4. 
Each session lasted for 10 sec. The whole series of 
recordings for each subject was repeated three times for 
three static activities: with the subject sitting on a chair, 
lying on a bed, and standing.  

B. Measurement System 
Accelerometer data were recorded using the SHIMMER 

platform [7]. SHIMMER is a small wireless sensor platform 
designed by Intel for health-sensing applications. All 
sensors’ trasmit data using Bluetooth to a portable PC 
equipped with data acquisition hardware and software to 
collect and store the signals. The sensor size is no bigger 
than a small matchbox. Sensors on the arms and legs are 
attached on specially designed elastic bands with Velcro, 
which allow fixation to any wrist or ankle size. Sampling 
rate is set to 100Hz for each signal. During the 
measurement, the activities of the subjects were recorded 
using a portable video camera.  

C. Resting Tremor Metric 
In the experimental protocol, the subjects were asked to 

emulate parkinsonian RT for different severities. The 
annotation consists of the sample points where RT starts and 
ends, as well as the severity of the RT. Thus, a pulse signal 
is produced: 
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where ia  and ib are the start and the end of periods of RT, 

i , and ki  is the RT severity of the specific period. In 

order to accumulate the transition from the non-tremor 
region to the tremor region we produce a smoother 
annotation signal convolving ( )s t  with a hamming window 

( )h t  of length 5 ,⋅ Fs  where Fs  is the sampling frequency 
of the signal. 

The RT metric is thus given by: 
 

( ) ( ) ( ).= ⊗RT t h t s t  (2) 

 

D. Feature Extraction in Real Time 
To our knowledge, RT assessment relies on time-domain 

and frequency-domain features [3-6]. However, in order to 
make a more robust system which is user independent, we 
ignore the statistical features of the signal which are very 
sensitive to sensor configuration and the subject. Thus, we 
concentrate on features from the frequency domain (in the 
frequency range of interest, 4-10 Hz according to the 
literature [2,3]). More specifically, we split the frequency 
band of interest in four equally distributed bins:  
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The features extracted according to the proportion of 
energy signal contained in each one of the four bins: 
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where X  is the DFT of the signal and  
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However, instead of using DFT for energy estimation we 
use an alternative method, more convenient for real-time 
application. It is possible to determine the energy of the 
signal in a specific frequency band after proper filtering, 
isolating the proper frequency band. Having a signal 
containing energy only on a specific band R  then according 
to Parseval’s theorem we have: 
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where X  is the DFT of the signal, ( )E R  is the energy on 
the specific frequency band and E  is  the energy on the 
whole frequency domain. Thus, we needed to derive a 
filtering schema which isolates the four frequency bins of 
interest. This can be achieved with a combination of 
symmetric FIR digital filters. In order to reduce filter 
complexity, we down sampled the raw signal at a factor of 2. 
First, the signal was passed through a high pass filter with 
cutoff frequency at 2-4 Hz. Then a low pass filter at 10-12 
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Hz is applied in order to remove the noise. The remaining 
signal contains the signal in frequencies from 4 to 10 Hz. 
Next, we apply a low pass filter with the desired cutoff 
frequency and the filtered signal propagates to the next filter. 
Subtracting the filtered signal from the input signal, delayed 
according to the filter length, we obtain the signal with 
energy only on the desired band. 

Each accelerometer has three signals; the accelerations 
produced on the three axes x-y-z. All axes must have the 
same frequency distribution in the band of interest but in 
different amount of energy. This assumption was also 
confirmed by our data (Fig. 1). Taking that into account, we 
fuse the information of the three axes by simple taking the 
average energy in each bin from all accelerometer axes: 
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The correlations of the features with the RT activity are 
given in Table I. The total energy is the sum of energies in 
the four bins. We observe that total energy has high 
correlation with the RT, however we ignore this feature as is 
not affine transformation invariant and thus subject and 
sensor dependent. 

E. Classification 
According to the experimental protocol, the RT is 

recorded for four different severities. In order to determine 
the differentiability of the RT severities, we first treat the 
problem as a classification one. Initially, we equalize our 
dataset taking all the samples from the class with the less 
sample number and choose randomly equal number of 

sample from each other class. Thus, we produce a dataset 
with equal distributed classes. Then, in the new dataset we 
perform 5-cross validation using K-NN and decision tree 
classifiers [14] obtaining the confusion matrices. The above 
procedure is performed 50 times.  

F. Regression using Artificial Neural Networks 
The focus of this work is the development of a real-time 

system obtained to provide a continuous metric of RT based 
on the features from the accelerometers. As an estimator we 
use an artificial neural network (ANN) [15], having as input 
the energy proportion contained in each bin and as a desired 
output the metric described in Section II-C. The hidden layer 
has sigmoid nodes and the output node is linear.  

III. RESULTS 

A. Classification 
Classification results are presented in Table II for K-NN 

(K=3) and C4.5 decision tree classifiers [14]. Note that both 
classifiers have similar performance (the slightly better 
results of the 3-NN probably are due to similarity of the data 
from the same subject) and the source of confusion is 
between the RT severity classes, probably due to 
incapability of the control subjects to emulate different RT 
severities in the same way every time. At this point, we must 
notice that in our experiments using additional features, as 
statistical ones and the total energy of the four bins much 
higher accuracy is achieved (above 91%). However, we 
believe that this accuracy is biased due to the experimental 
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Fig. 1.  Energy on B1 bin (4-5.5Hz) for the three axes (x-y-z) for an 
accelerometer. 
 

TABLE I 
CORRELATION OF EXTRACTED FEATURES WITH THE RT 

 RT activity 

Total Energy 0.8182 
Frequency Bin 1 -0.2573 
Frequency Bin 2 -0.3105 
Frequency Bin 3 -0.4272 
Frequency Bin 4 0.6373 

 

TABLE II 
CONFUSION MATRICES FOR K-NN (3-NN) & C4.5 DECISION TREE 

CLASSIFIER  

 K-NN Classifier 

Results/Class No RT RT severity 
1 & 2 

RT severity 
3 & 4 

FNs per Class 0.84 0.72 0.72 
TPs per Class 0.97 0.63 0.74 

Accuracy 0.7622   

 C4.5 Classifier 

Results/Class No RT RT severity 
1 & 2 

RT severity 
3 & 4 

FNs per Class 0.78 0.69 0.75 
TPs per Class 0.89 0.61 0.76 

Accuracy 0.7427   
RT = Resting Tremor, FN = False Negative, TP = True Positive. 
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Fig. 2.  Correlation between RT metric vs. ANN output. 
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protocol, a case which will be examined given more 
experimental data, and data from real Parkinson patients. 

B. Regression using Artificial Neural Networks 
We have tested various architectures. The architecture 

with four input nodes, one hidden level with eight nodes and 
one output node (4-8-1) provides with the best results. In 
Fig. 2 the correlation between RT metric and the ANN 
output is illustrated. The correlation with the RT activity is 
0.88, which is quite promising, as a preliminary result. Fig. 3 
shows the ANN output for an example input signal (only for 
the x-axis). Note that the output captured the start and the 
end of the RT activity. For comparison purposes, the output 
of an ANN trained with the total energy of the four bins is 
also depicted. Note that the later differentiates better the four 
states. This differentiation is based mainly in the amplitude 
of the RT (as observed from the signal), thus the energy of 
the signal. However, the subjects when asked to simulate 
higher severity tremor, tend to accommodate higher 
frequency with higher amplitude, which is not necessary in 
true Parkinson patients [1,2]. 

C. Execution time 
The filtering schema and the ANN are implemented in 

Matlab/Simulink. We investigated two possible analysis, one 
in 50 Hz with energy taken in buffers of 128 samples (~2.5 
sec) and another in 25 Hz with energy taken in buffers of 75 
samples (2.5 sec). Fig.4 shows the execution times of the 
filtering process and the whole system, as well as the 
execution time of a FFT on the equal sized buffers, for 
comparison. Note that the execution time of the whole 
system is comparable to a simple FFT’s and thus is easily 
applicable to a real-time system. 

IV. CONCLUSIONS 
In this paper, an initial evaluation of the proposed system 

for real-time quantification of RT provides with promising 
results. Recording and quantification of the severity of RT in 
PD could have direct clinical implications for the diagnosis 
and therapeutic management of PD. In early stages of PD the 
RT may be very mild and intermittently present making 
diagnosis difficult if one relies for the detection of RT in the 

short office visit. Having a real-time system that can record 
reliably the existence of the typical Parkinsonian RT may 
help the early diagnosis of the disorder. Current effort is 
concentrated on the confirmation of these results using 
patients. 
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Fig. 3. The output of the ANN for a raw signal (x-axis). The ANN 
output without total energy (top), the raw signal (middle) and the 
ANN with total energy (bottom). 
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Fig. 4. Comparison of execution times of the FFT the filtering 
process, and the whole system. 
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