
  

  

Abstract — Accurate assessment of mobility in bed presents 
challenges to clinicians and researchers alike. Mobility is 
traditionally assessed by either overnight polysomnograph 
recording or wrist actigraphy. This paper describes an 
alternative system for unobtrusive and continuous monitoring 
of sleep movements that uses load sensors installed at the 
corners of a bed. This work is focused on the detection and 
classification of clinically relevant types of movement based on 
the forces sensed by load cells. The accuracy of the system for 
detecting movement has been evaluated using data collected in 
a laboratory setting. We also present a comparison of the 
proposed system with wrist-actigraphy. 

 

I. INTRODUCTION 
ODY movements in normal sleep constitute a very 
regular pattern that is characteristic of the sleeper. Any 

alteration in this pattern may reflect internal or external 
changes in the sleep-wake cycle [1-3]. A sufficiently 
detailed record of nightly movement, preferably obtained 
from non-invasive monitoring devices, may help to identify 
motor disturbances that affect sleep quality. The assessment 
of sleep-related motor disturbances is traditionally 
performed by overnight polysomnograph (PSG) recording 
or actigraphy. PSG is an expensive method that involves at 
least a full night’s stay in a sleep laboratory attended by 
properly trained technicians, which may not provide a 
representative sample of typical movements. Actigraphs are 
wristwatch-like devices that measure acceleration, and 
provide information on the activity level of the user. They 
are usually placed on the non-dominant wrist, although they 
can also be placed at the site of movement to examine 
specific movements. Physical motion is translated to a 
numeric representation, sampled at a certain rate and 
aggregated at a constant interval usually referred as an 
epoch (e.g. 15 seconds), which varies according to the 
manufacturer [4]. The exact nature and the number of 
movements that occur are not recorded [5]. Data loss occurs 
when the person does not wear it. Therefore, the actigraph 
has to be worn all the time and patients have to keep records 
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of the times when it is taken off. Also, with actigraphy, the 
exact time in bed is not recorded, relying instead on patient 
report. 
 An alternative approach is to assess body movements in 
bed in a continuous and unobtrusive way by instrumenting 
the bed itself. Our research focuses on an alternative for 
unobtrusive assessment of movement in bed that employs 
four load cells installed at the corners of the bed. We 
developed a system that allows both detection of body 
movement (i.e., identification of the time intervals when a 
movement in bed occurs) and classification of the type of 
movement (i.e., determination of the type of movement 
performed in a given time interval).  

Load cell technology, based on strain gauge sensors, 
provides stable and reliable data and therefore it is a 
practical solution for long-term monitoring. The system is 
designed to detect postural shifts, smaller position changes, 
and limb movements based on changes in the magnitude of 
the load cell signals. We show evidence that the system can 
differentiate types of movements that are relevant to clinical 
disorders, and present a comparison of the proposed system 
with wrist-actigraphy. 

II. METHODS 

A. Monitoring of Sleep Movements 
Our goal is to monitor sleep movements by determining 

the type and frequency of movements performed by a patient 
during the night. Movement of a person in bed generally 
results in rapidly changing values in the load cell signals. 
From these changing load cell signals, we can derive 
parameters that describe the trajectory of the center of the 
person’s mass during movement and the characteristics of 
that trajectory. We use these parameters to detect the 
movements and classify them into one of the following 3 
classes: 

 Class 1: major posture shifts - changes in position that 
involve a torso rotation larger than 45 degrees that may 
represent movements related to getting into or out of 
bed, or associated with wakefulness. 

 Class 2: small and medium amplitude movements - 
changes in body position involving the head, arms, 
torso rotations smaller than 45 degrees, any 
combination of upper and lower limbs, and any 
combination of limbs and torso rotations smaller than 
45 degrees. They may represent restlessness or position 
changes associated with non-rapid eye movement 
(NREM) sleep stage I. 
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 Class 3: leg movements - isolated movement of lower 
limbs (thighs, legs and feet) that may be associated 
with periodic limb movements during sleep (PLMS) or 
restless legs syndrome (RLS).  

The choice of classes was based on movement descriptions 
used in the literature to analyze the distribution of 
movements during sleep [1, 6, 7]. The analysis of data is 
performed offline, and data can be recorded continuously for 
many nights. Movement detection and classification 
frameworks are described in Sections II.B and II.C, 
respectively. 
 

B. Movement Detection Framework 
A movement of a person in bed is generally characterized 

by rapidly changing forces at the load cells. Therefore, the 
general idea underlying the movement detection is based on 
the assessment of the weighted variability in the short-term 
energy across the load cells. 

 In its simplest form, the problem of detection of 
movement in bed consists of computing a set of features f(t) 
at each time t, and determining whether someone is moving 
or not at a given time t. It is formulated as a likelihood ratio 
test (LR) between two mutually-exclusive hypotheses: H0: 
that a movement has not occurred at time t, and H1: that a 
movement has occurred at time t. The LR test is a 
comparison between the likelihood ratio of two hypotheses 
and a threshold, and it is given 
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The set of features is computed by estimating the energy 
in the short-term variability in each load cell. The individual 
load cell signals wi(t), for i = 1, 2, 3, 4, are then combined by 
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We then estimate the scaling coefficients for a weighted 
combination of the mean-square differences ( )tsi

2 . The goal 
is to assign degrees of relevance to modulate the 
contribution of each load cell signal based on its “gain”, i.e., 
the distance from the estimated center of mass of the body. 
The notion is that the leverage of the signal from each load 
cell is inversely proportional to the distance of the moving 
body part. The center of mass is computed by treating the 
fixed location of the load cells as a two-dimensional 
Cartesian system so the center of mass is estimated using the 
law of moments or law of levers [8] as 
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where xCM (t) and yCM (t) are the coordinates of the body 
center of mass when someone is lying in bed, at a given time 
t, and wi(t0) represents the load cell values when the bed is 
empty. Subtraction of the empty-bed load cell values 
removes any asymmetry in the bed weight distribution to 
avoid its potential effects on the location of the center of 
mass of the system.  

The set of features f(t) is an one-dimensional vector given 
by a weighted sum of the mean-square differences: 
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The scaling coefficients ( )tci  reflect the distance of the 
center of mass from the ith corner, and were calculated based 
on the distance di(t) between load cell i and the center of 
mass of the body 
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A kernel density estimation procedure is used to estimate 
the likelihood functions for the hypotheses p(f|Hj), for 
j = 0,1. More details can be found in [9]. 

C. Movement Classification Framework 
The subject-dependent movement classification 

framework consists of a training module and a testing 
module. The first step in the training module consists of pre-
processing the load cell data from each movement, from the 
data of each subject, to estimate the trajectory of the center 
of mass during movement.  In the second step, the feature 
extraction step, descriptors of the trajectory of the center of 
mass during movement are extracted: (1) the distance 
between initial and end points of the trajectory, (2) the 
length of the trajectory, and (3) the variance of the trajectory 
in the y-direction perpendicular to the sleeper’s body axis. 
These features provide a simple characterization of the 
spatial and (indirectly) temporal aspects of the movements in 
bed. In the third step, the statistical modeling step, the goal 
is to estimate the parameters of each Gaussian Mixture 
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Model [10] that represents a certain movement class. In the 
testing module, after the testing data are pre-processed and 
features are extracted as it was done in the training module, 
the system estimates a likelihood score for each class for 
every test pattern, based on the model parameters estimated 
during the training module. A class label is assigned based 
on the maximum likelihood rule [11].  

D. Laboratory Evaluation 
 The system was evaluated on data collected in laboratory. 
A convenience sample of fifteen participants (ages 22 to 45 
years, mean age 30.4 ± 6.07 years old) was selected from 
faculty and students at Oregon Health and Science 
University (OHSU). Data were collected using two different 
protocols, free movement (where subjects were instructed to 
make a natural transition from one position to another when 
prompted by a beep) and fixed movement (where subjects 
were instructed to perform pre-defined movements when 
prompted by a beep), to allow both diversity and uniformity 
of movements. Each subject performed 10 natural 
transitions, plus 5 trials composed of 20 pre-defined 
movements each. These pre-defined movements include 6 
large movements of torso and limbs (posture shifts) and 14 
small movements (6 isolated movements of the head or 
arms, and 8 leg movements). The selected set of movements 
is related to the movement classes chosen for this study. All 
participants provided written informed consent (OHSU IRB 
#7983).  

E. Ground truth measurements 
Video was used as ground truth for this experiment. A 

Creative web cam NX Ultra camera was mounted on the 
ceiling, 2 m above the bed. Uncompressed 640x480 pixels 
RGB images of the bed were recorded at a rate of 10 frames 
per second, time-aligned with the load cell data, for offline 
analysis. Subjects wore cloth bands of different colors on 
the head, arms, legs, and torso. The actual movement 
intervals were estimated by tracking the trajectories of the 
cloth bands using template matching [12]. 

 

F. Sensors 
Load cell data were collected using single point load cell 

(AG100 C3SH5eF, Scaime™, France) with a nominal load 
of 100 kg and an output ranging from 0 to 9.5 mV per 100 
kg. Data were collected using an USB acquisition board 
(335-2001 Rev. C, Elektrika Inc.) Data were sampled at 200 
Hz and digitized using a 13-bit analog-to-digital converter, 
and then downsampled to 10 Hz because the energy of the 
load cell signal for the set of movements performed is most 
concentrated below 5 Hz. Since voluntary movements rarely 
exceed 3-4 Hz, this choice was appropriate for the current 
study but does not prevent the use of higher sampling rates 
when analyzing involuntary movements.  

Actigraphy data were collected simultaneously using an 
Actiwatch64 (Mini-Mitter Company Inc., Bend, Oregon). 
With each movement of the wrist, an accelerometer inside 
the Actiwatch generates a variable voltage that is sampled at 

a frequency of 32 Hz. The signal is integrated over a user-
selected epoch, and a value expressed as “activity counts” is 
recorded on local memory. As defined by the manufacturer, 
the activity count is zero if no movement has been detected 
in an epoch. Therefore, we considered movement to occur 
any time the activity count for an epoch as greater than 0. 
The epoch used in the study was 15 seconds. 

III. RESULTS 

A. Results of Movement Detection by Load Cells 
In a decision process that minimizes errors, the LR of 

each data sample is compared to a threshold, producing a 
sequence of decisions that reflect the time periods when the 
subject is either moving or not. The decision threshold is 
estimated a posteriori by searching a value that produces the 
EER when applied to the likelihood ratio estimated from the 
testing data. In practice, the threshold is obtained by varying 
its value across all available values of LR and determining 
which value better satisfies the EER condition. 

A common measure of the accuracy of a detection system 
is its equal error rate (EER), which is the operating point 
where the number of missed detections (false negatives) is 
equal to the number of false positives. The decisions of the 
detector are discrete, and false alarm rates and miss 
detection rates are defined by the counts of correct and 
incorrect sample decisions. For our load cell system, the 
EER was 3.22%. Of a total of 890 movements tested, only 
11 movements were missed and 14 were falsely detected. 
The missed movements include 7 head movements, 2 arm 
movements, and 2 medium amplitude movements that 
include arm and leg movements to adjust position. For an 
average miss detection rate of 3.22%, 2.69% accounts for 
miss detections at the movement onsets and offsets, and only 
0.53% accounts for missed movements. For the false alarm 
rate, 2.77% accounts for false alarms at the onsets and 
offsets, and only 0.45% accounts for falsely detected 
movements. This shows that most of the errors come from 
errors at the estimation of the onsets and offsets.  

B. Results of Movement Classification by Load Cells 
The performance measure used in the classification of 

movements was the classification rate across all subjects, 
which is the proportion of test samples from all subjects that 
are correctly classified. The classification rate across all 
subjects was used because we want to measure the overall 
performance of the classifier independently of the subject. 
For each subject, movement data from the trials were 
randomly split into 2 sets: training (3/5 of the dataset) and 
testing (2/5 of the dataset). For each subject, the classifier 
was designed using the training set, and the performance 
was evaluated on the test set. The system correctly classified 
84.6% of these movements. The most frequent errors were 
between classes 2 and 3 (medium movements versus leg 
movements). A closer examination of the errors showed 
that, in many cases, the classifier mistakenly classified 
movements consisting of leg movements and very small 
adjustments of head or torso (class 2) as leg movements 
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(class 3). In such cases, the small movements in the upper 
body did not substantially affect the overall trajectory of the 
center of mass.  

C. Comparison to Wrist-Actigraphy Data 
In order to do the comparison with actigraphy, the load 

cell detection results (sampled at 10 Hz) and the ground 
truth video data (sampled at 10 frames per second) were 
converted into 15 second epochs. To compare the actigraphy 
data to the ground truth video data, we recorded a “hit” by 
the Actiwatch for every epoch in which there was an activity 
count larger than zero, and during which an actual 
movement was recorded on the video within the time 
interval of the respective epoch. To compare the load cell 
data to the ground truth video data, we recorded a “hit” by 
the load cell detector for every epoch in which a movement 
was detected, and during which an actual movement was 
recorded on the video within the time interval of the 
respective epoch. The probabilities that a given movement 
was detected by the actigraph or the load cell detector given 
that the movement had occurred according to the video 
assessment are shown in Table 1. These probabilities show 
that, whereas most of the posture shifts are detected by the 
actigraph, head and arm movements (when moving the arm 
that does not have an actigraph) are missed. Approximately 
44% of the leg movements were detected, and the actigraph 
detected very small movements of the wrist that could not be 
seen from video during leg movements. The results show 
that the load cell detection system yields more accurate 
detection of movements in bed than wrist-actigraphs and, in 
particular, that it can detect a wider range of movements in 
bed rather than the movement of a specific limb.  
 

TABLE I 
ACTIGRAPH AND LOAD CELLS HIT RATES FOR THREE TYPES OF 

MOVEMENTS 

 Posture 
Shifts 

Medium Amplitude 
Movements 

Leg 
Movements 

Actigraph 1 0.732 0.438 

Load Cells 1 0.974 1 

IV. CONCLUSION 
This paper presented a system for assessment and 

classification of movement in bed with load cells. The main 
goal of this work was to examine the extent to which the 
load cell signals can be used to infer clinically meaningful 
aspects of movement and sleep quantity. Although the 
evaluation of the system was based on voluntary movements 
that were performed during awake periods, the system has 
great potential for clinical use. One of the aspects that could 
most benefit from further study is to determine how the 
system can be used to document RLS and PLMS. Since RLS 
patients constantly move their legs to relieve the tingling 
sensations caused by this disorder, we speculate that our 
system could be used as an aid for diagnosis or treatment of 
RLS because it can differentiate leg movements from other 
movements. Our system can be employed in such cases to 
monitor the frequency of leg movements. Also, we have 

shown that the load-sensor system compares favorably with 
wrist-actigraphs for the determination of lower extremity 
movement, but a comparative study of the bed-based system 
with ankle or calf-actigraphy is needed. We believe the 
system offers advantages over actigraphy in terms of 
comfort and ability to confirm and document times in bed, in 
addition to the potential to accurately classify limb 
movement. 
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