
Abstract—Pattern recognition myoelectric control in 

combination with targeted muscle reinnervation (TMR) may 

provide better real-time control of upper limb prostheses. 

Current pattern recognition algorithms can classify movements 

with an off-line accuracy of ~95%. When amputees use these 

systems to control prostheses, motion misclassifications may 

hinder their performance. This study investigated the use of a 

decision based velocity profile that limited movement speed 

when there was a change in classifier decision. The goal of this 

velocity ramp was to improve prosthesis positioning by 

minimizing the effect of unintended movements. Two patients 

who had undergone TMR surgery controlled either a virtual or 

physical prosthesis. They completed a Target Achievement 

Control Test where they commanded a virtual prosthesis into a 

target posture. Participants showed improved performance 

metrics of 34% increase in completion rate and 13% faster 

overall time with the velocity ramp compared to without the 

velocity ramp. One participant controlled a physical prosthesis 

and in three minutes was able to create a tower of 1” cubes 

seven blocks tall with the velocity ramp compared to a tower of 

only two blocks tall in the control condition. These results 

suggest that using a pattern recognition system with a decision 

based velocity profile may improve user performance. 

I. INTRODUCTION 

n individual with an upper limb amputation currently 

has the choice between using remaining joint motion to 

control a body-powered prosthesis or myoelectric signals 

from residual muscles to control an externally powered 

prosthesis. These control mechanisms, however, are slow 

and rarely become intuitive as the same movements or 

muscles signals are used to control different functions. 

 One type of advanced myoelectric control is through 

pattern recognition. For this signal processing technique, a 

computer program identifies an individual’s intended 

movements by looking at the pattern produced by several 

channels of surface electromyography (EMG) [1]. After 

patterns are classified, a command signal is sent to a 

prosthesis. This control relies on the assumption that EMG 

patterns are repeatable within the same movement and 

distinct across different movements [2]. 

Researchers have studied various pattern classification 

techniques with the goal to increase classification accuracy. 

Transradial amputees using pattern recognition systems with 

linear discriminant analysis, fuzzy logic, or artificial neural 

networks have off-line accuracies ranging from 92-98% [3-

5]. Although no existing pattern recognition system is 100% 

accurate, they have been proposed for control of 

multifunctional myoelectric prostheses [3, 6].  

A new surgical technique called targeted muscle 

reinnervation (TMR) [7, 8] was developed to make the 

control of myoelectric prostheses more intuitive. In TMR 

surgery, residual nerves that originally innervated muscles of 

the amputated limb are transferred to alternative muscles 

that are no longer biomechanically functional. The 

reinnervated muscle serves as a biological amplifier for the 

amputated nerve signal. Surface electrodes can then record 

EMG signals from the reinnervated muscles.  

With the signal processing technique of pattern 

recognition in combination with TMR surgery, an 

individual’s muscle-amplified neural signals control 

physiologically appropriate functions in the prosthesis [9]. 

TMR surgery provides a richer data set for pattern 

recognition control and can be used on individuals with 

higher amputations. This control strategy has recently 

demonstrated to be useful for real-time control of an upper 

limb prosthesis with a mean classification accuracy of 88% 

for patients
 
who had undergone TMR surgery [9]. Even with 

high system accuracies, there still are misclassifications 

where the pattern recognition system predicts the wrong 

motion. These unintended movements may cause users to 

become frustrated, drop items they are manipulating, and/or 

be unsuccessful at a task they are trying to complete.  

We have developed a way to minimize the effect of 

unintended movements. Based on previous work described 

by Hudgins et al [10], we implemented a decision based 

velocity profile that limits the speed of any motion when 

there is a change in decision from the classifier. Motion 

speed could then increase, or ramp up, to 100% of the 

original proportional speed (determined by the mean 

absolute value of EMG channels) as more and more same 

class decisions are made. Furthermore, the velocity ramp 

took less time to ramp back up to speed if only a few 

different class decisions were made. Constraining the speed 

of new motion classes with a ramp does not change the
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decision output from the classifier but limited the motion 

effect. This strategy may prove beneficial because many of 

the misclassifications happen at the onset or transition of 

motions. This method also initially limits the speed of 

intended movements but could provide an advantage as this 

may increase users’ fine control of a prosthesis.  

Only recently have real-time performance metrics been 

used to assess the real-time pattern recognition control and 

function of multifunction prostheses [9]. Existing real-time 

performance metrics prompt users to move a multifunctional 

virtual prosthesis through its full range of motion and 

quantify motion completion time and motion completion rate 

[9]. We developed a new virtual test to further quantify 

performance and evaluate the usability of a pattern 

recognition system with a decision based velocity ramp. In 

the Target Achievement Control (TAC) Test, users moved a 

virtual prosthesis to a target posture. Performance metrics 

included motion completion time, motion completion rate, 

and overall test time. The results suggest that a pattern 

recognition system with a velocity ramp can improve 

performance of a multifunctional prosthesis. 

II. METHODS 

A.   Participants 

Two patients who had undergone TMR surgery 

participated in this study: one male participant (S1) with 

bilateral shoulder-disarticulations and one female participant 

(T4) with left transhumeral amputation. Both patients used a 

myoelectric prosthesis and had experience with pattern 

recognition systems. Participants gave written informed 

consent to participate in these studies. 

B.   EMG and Pattern Recognition Configuration 

Nine bipolar EMG electrodes were placed on the skin 

over the reinnervated muscles. Four electrodes were placed 

on the clinical sites used for each patient’s myoelectric 

prosthesis. The additional five electrodes were distributed to 

cover the remaining reinnervated muscle area. The EMG 

signals were amplified and high pass filtered (cutoff 

frequency of 80 Hz for Participant S1 and 20 Hz for 

Participant T4). Data was sampled at a frequency of 1 kHz 

and processed in real-time using custom Matlab programs.  

Participants trained the system to recognize nine motion 

classes. The classes included elbow flexion, elbow 

extension, wrist flexion, wrist extension, forearm supination, 

forearm pronation, hand opening, one hand grasp, and no 

movement. Subjects were prompted with a demonstration of 

each movement and asked to perform the movement at a 

comfortable level of effort. Each contraction was held for 

three seconds with a three second delay between prompted 

movements.  Movements were repeated five times for a 

concatenated total of 15 seconds of data for each class.  

The pattern recognition system segmented the EMG data 

from each channel into a series of 150 ms analysis windows 

with a 50 ms window increment. Four time domain features 

(mean absolute value, number of zero crossings, waveform 

length, and number of slope sign changes) were extracted 

from the EMG data each analysis window. After all nine 

motion classes were trained, a linear discriminant analysis 

classifier was used to predict user commands and control a 

prosthesis. The threshold and gain of each motion class were 

configured such that participants could achieve full dynamic 

range of that class (i.e. they could produce a muscle 

contraction that resulted in either a small output signal which 

would operate the prosthesis motors at minimum velocity or 

a larger output signal which would operate motors at 

maximum velocity). After all motions were configured, three 

more repetitions of each movement with three second 

durations were collected to test the classifiers’ accuracy. 

C.   Decision Based Velocity Ramp 

In the control condition, output speed of the selected 

motion class was determined by the mean absolute value of 

the nine EMG signals in conjunction with thresholds and 

gains. In the experimental condition, a decision based 

velocity ramp was applied at the end of all other signal 

processing to limit the motion class’ speed when there was a 

change in class decision. The velocity ramp used in this 

experiment was a linear function and described by (1). 
 

  

 

 

 
 

 
(1) 

 

Ramp length equaled 40 and desired speed was the user’s 

proportional speed determined by the mean absolute value of 

EMG channels. Class specific counters increased by one if 

the newest motion decision was the same as the previous 

decision and decreased by eight (or 20% of the ramp length) 

when there was a change in class decision. Each counter’s 

minimum was zero and maximum was equal to the ramp 

length. The velocity ramp limited the output speed of a class 

after a decision change occurred. The ramped output speed 

increased to saturation of 100% of the desired speed as more 

and more same class decisions were made. Figure 1 shows 

the relationship between the desired speed, ramped output 

speed and counter of a wrist flexion movement.  

D.  Performance Tests 

After familiarization with the virtual environment, 

participants completed a virtual test in an ABAB (or BABA) 

format. Condition A was the control, and Condition B was 

the experimental condition of pattern recognition with the 

decision based velocity ramp. Participants performed a 

 

 
 

Fig 1. Movement speed and counter of a wrist flexion movement 

versus time. The black line represents desired speed, grey line 

represents ramped speed, and dots represent individual decisions. 

The wrist flexion counter decreases (yellow shaded region) 

indicating that a decision other than wrist flexion was produced. 
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TABLE I. TACT PERFORMANCE METRICS 

  Participant S1 Participant T4 

  Control Velocity Ramp Control Velocity Ramp 

All trials: Completion Rate (%) 56.3 ± 5.1 92.2 ± 3.3 65.6 ± 16.5 71.9 ± 10.8 

 Total Time (s) 178.2 ± 15.4 139.2 ± 15.7 173.2 ± 19.6 165.7 ±21.7 
      

Successful trials only: Completion Time (s) 6.0 ± 1.1 6.1 ± 0.9 6.6 ± 0.4 6.46 ± 1.0 

 

Target Achievement Control (TAC) Test five times per 

condition to quantify performance with and without the 

velocity ramp. An outline of a target posture appeared on the 

screen (Fig 2) and participants were instructed to move the 

virtual arm to the target posture and remain there for two 

seconds. Subjects received visual feedback that they reached 

the target within an acceptable tolerance (10 degrees for S1 

and 20 degrees for T4). Each target posture only required 

one motion to achieve (e.g. wrist flexion) but all other 

trained motions were active in the classifier.  

Participants could complete the test the fastest if they 

were able to control the virtual arm in such a way that they 

only produced the necessary motion (e.g. wrist flexion). 

However, if they overshot the target posture (e.g. produced 

wrist flexion for too long) or produced an incorrect class 

decision (e.g. wrist pronation), it would cause unnecessary 

movements that needed to be corrected for (e.g. wrist 

extension or wrist supination, respectively) to achieve the 

target posture. The test consisted of two repetitions of eight 

target postures with a trial timeout length of 15 seconds.  

Participant S1 also performed a block stacking task with 

an experimental multifunction prosthesis with and without 

the velocity ramp. He used a 7 degree of freedom arm 

developed by Johns Hopkins University Applied Physics 

Laboratory and collaborators. Three additional electrodes 

and one additional degree of freedom, humeral rotation, 

were included. S1 was already familiar with operating this 

prosthesis and was instructed to stack as many 1” cubes on 

top of one another in three minutes. 

III. RESULTS 

A.   Classification Accuracy 

Average classification accuracy over all nine trained 

movements was 94.0% ± 9.2% for participant S1 and 87.7% 

± 8.4% for participant T4. 

B.   Virtual Prosthesis Performance Metrics 

Averaged performance metrics for each participant with 

and without the velocity ramp are summarized in Table 1. 

The total average time to complete all 16 postures of TACT 

was approximately 22% (S1) and 5% (T4) faster for the 

velocity ramp than for the control. Overall completion rates 

for individual participants are shown in Fig 3. The amount of 

trials participants were able to successfully complete 

increased by 63% (S1) and 10% (T4) for the velocity ramp 

compared to the control.  

Performance metrics for only successful trials do not 

show differences between conditions. The average time to 

complete a TACT trial successfully during both conditions 

was approximately 6s (S1) and 6.5s (T4). Average non-zero 

virtual joint speeds were 99.5º/s (S1) and 140.6º/s (T4). 
 

 
 

Fig 3. TAC Test motion completion rates. Solid lines represent 

the control condition and dotted lines represent the system with 

the velocity ramp. A higher task completion rate was achieved 

with the velocity profile for both participants. 

C.   Physical Prosthesis Performance Metrics 

While using 7 degree of freedom prosthetic arm to stack a 

tower of 1” cubes, participant S1 built a higher tower with 

the velocity ramp. In three minutes he built a tower of seven 

blocks with the velocity ramp compared to a tower of two 

blocks in the control condition. No blocks fell during the 

condition with the velocity ramp, whereas six blocks were 

unsuccessfully placed on the tower and fell during the 

control condition. These cubes were knocked over or off 

because of inadvertent movements caused by 

misclassifications. For the ramped system, S1 was allowed 

to continue stacking until the tower collapsed, resulting in a 

tower of 13 blocks built in seven minutes (Fig 4).  

IV. DISCUSSION 

This study presented a strategy of improving prosthesis 

positioning by minimizing the effect of misclassifications of 

real time pattern recognition myoelectric control. Average 

classification accuracies of 94% and 88% from the current  

 
 

Fig 2. Target Achievement Control (TAC) Test. a) Participants 

were instructed to move the virtual arm into a target posture 

indicated by the transparent outline of an arm. b) The virtual 

hand changed color when the target posture was achieved.  
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study were similar to previous results on amputees
 
who had 

undergone TMR surgery [9]. A decision based velocity ramp 

was used to slowly ramp up motion speed as consecutive 

same class decisions were made, thereby reducing the 

amplitude of unintended motions. Accurate motion 

classifications were also subject to the decision based 

velocity ramp and therefore decreased the initial speed of 

intended motions. Decreasing initial speed of all 

movements did not adversely affect users’ performance 

and may have lead to more fine control of the 

multifunctional virtual prosthesis. Users had a 34% higher 

completion rate with the velocity ramp compared to trials 

without the velocity ramp. When users were successful at 

TAC Test trials, on average they finished with ~equal 

completion times with and without the velocity ramp. This 

result further supports the idea that limiting initial speed of 

all movements due to the velocity ramp did not negatively 

affect performance. Both participants reported less 

frustration during trials with the velocity ramp. 

The velocity ramp parameters chosen in this study may 

not have been optimal. The ramp length value of 40 

decisions for the virtual task was determined through pilot 

studies. This value provided a relatively short period of time 

for the speed to initially ramp up to 100% of the desired 

speed but still minimized the effect of several inaccurate 

classifications in a row. The 20% ramp down counter length 

was chosen to allow for less time to ramp up to speed if only 

a few different class decisions were made. Additional testing 

is necessary to determine if choosing a different of ramp up 

or down length could further improve user performance. 

Even with a sub-optimal ramp and short training periods, 

users still completed more trials with the velocity ramp. 

Limited speed should not be confused with increased 

system delay. Shorter system delays can increase system 

usability [11] but with a velocity ramp users are still getting 

visual feedback about what class they are in with the only 

difference that the movement has a decreased amplitude. 

Therefore the system delay is the same for the pattern 

recognition system with and without velocity ramp.  

This study also suggests that the virtual test (TAC Test) 

may be a useful tool to quantify differences in control 

mechanisms without the initial need for a physical 

prosthesis. Although this test cannot measure functional 

outcomes, users get practice in performing repeatable 

muscle contractions. TAC Test also may allow users to 

become more familiar at controlling a multifunctional 

prosthesis in a goal-oriented way. Both participants showed 

increases in performance metrics with the velocity ramp as 

measured by the TAC Test. Participant S1 also demonstrated 

increases in performance while using a physical prosthesis 

as measured by the cube stacking task.  

V. CONCLUSION 

We have developed two useful mechanisms for pattern 

recognition with myoelectric control. First, adding a decision 

based velocity ramp to a pattern recognition system limits 

the speed of any motion when there is a change in decision 

from the classifier. Results suggest that using this new 

technique to minimize the effect of unintended movements 

may improve performance. Second, TAC Test may be a 

useful virtual test to quantify performance differences 

throughout time as both users learn to better control 

multifunctional prostheses and developers design new 

controllers. 
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Fig 4. Participant S1 

performing the block 

stacking task during the 

experimental condition 

with the velocity ramp. 
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