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Abstract—We present a technique that enables optimization 
of Electromyographic (EMG) electrode placement for grasp 
recognition. Previous works have shown that sophisticated 
control techniques for prosthetic devices are becoming 
available; however the issue of electrode placement has yet to 
be addressed. By processing a rich field of data, it is possible to 
determine which of the data sets will allow for greatest 
accuracy in prosthetic control. 

Data has been collected and processed from 128 sites on a 
human forearm while two different grasps were performed. 
Using two different feature extraction techniques – integral of 
absolute value and differential absolute value – the difference 
in means between performing each grasp type has been 
analyzed. This resulted in several regions around the wrist and 
the elbow that would be optimal for this particular setup. 
While the optimization process has been used here for 
discrimination between two particular grasps, it has the 
potential to extend to any desired actuation pattern. 

I. INTRODUCTION

ITH the increasing sophistication in prosthetic devices 
there is a need for better intention recognition and 

control. One approach to controlling advanced prostheses is 
to use surface EMG signals as an input. EMG measures the 
electrical potential disturbance caused when an action 
potential from a motor neuron causes a muscle fiber group 
to depolarize. Given the large volume of tissue that 
depolarizes, this produces a disturbance that is measurable 
through a spatial filter – the skin. 

EMG has been used as a control signal previously and it is 
generally limited to providing on/off control. While it has 
been shown that EMG can be used to identify different 
grasps that the hand can form [1-3], or to control single 
fingers [4], the issue has been the number and location of 
electrode sites on the forearm. Generally, the electrodes are 
placed by trained personnel; this is highly subjective [1].
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Electromyographic recordings can be either unipolar or 
bipolar. Unipolar recordings are taken with reference to a 
single point, meaning that amplification must occur at a 
remote site. Bipolar recordings are taken between two sites 
in close proximity, so while they have no single reference 
site, amplification can occur at the recording site, before 
noise becomes introduced into the system. Bipolar 
recordings have greatly reduced noise, which is 
advantageous for practical prosthetic systems. 

Previous work by the authors has shown that electrode 
sites can be optimized in order to provide maximum 
accuracy control actuation [5]. This is based on identifying 
the sites that provide the greatest difference in signal 
strength from resting to activation. In this paper, we extend 
this to identify the optimal sites for grasp control, between 
different grasp types. 

II. METHODS

Data was collected from a rich field of sites over the right 
forearm of a subject using a custom-designed silicone 
armband with embedded electrodes. The electrodes were 
referenced to a point on the elbow (i.e. the recordings were 
unipolar) and were passed through a Universal 
Electrophysiological Mapping (UnEmap) system, developed 
by the Bioengineering Institute of the University of 
Auckland for the filtering, amplification, measurement and 
processing of biopotential signals [6]. 

With the silicone armband secured on the forearm, data 
was recorded from 128 sites while the subject repeatedly 
performed either a pinch grasp, or a cylindrical grasp. These 
two grasps were chosen as a subset of the possible grasps 
the human hand can make. The data recordings were 
performed at a sampling rate of 5kHz, with the anti-aliasing 
filter set at 1kHz and the gain at 88. 

Bipolar recordings were estimated from unipolar 
recordings by taking spatial derivatives, i.e. the rate of 
change of surface potential recordings with respect to their 
location on the forearm. As some of the electrode sites did 
not record useable data (due to poor contacts) some data 
points could not be used for calculating spatial derivatives, 
with different grasp data sets having different electrode sites 
available. Channels that had rail-to-rail variances were 
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discarded as having poor contacts. 

Signal processing was performed using a 4-step process. 
First the electrical mains noise was removed from the signal 
using a 3rd order Butterworth digital filter and matched 
filtering was performed. Features were then extracted to act 
as representative quantities for the signal, and finally a set of 
representative data points were chosen for comparison to be 
made between data sets. The cut-off frequencies for the 
digital band-stop filter were set at 45Hz and 55Hz. This 
ensured removal of the 50Hz mains noise without significant 
attenuation of the desired signal.

Matched filtering was performed by convolving the 
original signal with a time-reversed known action potential 
(AP) signal. This known AP signal was derived from the 
average of a series of action potentials detected using an 
automatic detection algorithm. The data used to find the AP 
was then cross correlated with the found AP, and was run 
through the automated detection algorithm again. This 
process was repeated until the action potential to be used as 
a template had converged to the result shown in Fig. 1. 
Matched filtering was then performed on the data from each 
channel. An example data set is shown in Fig. 2, along with 
the result of the matched filtering of that data set.

Fig. 1.  Averaged, filtered action potential after iterative cross 
correlation.

Two feature extraction techniques were used in order to 
gain different representations of the data. 

The first feature extraction method, referred to as integral of 
absolute value (IAV) is: 

1. Take the absolute value of the data. 
2. For each time step, numerically calculate the 

definite integral of the data over 50ms either side 
of the current point. 

(a) 

(b) 
Fig. 2.   (a): Raw signal. Arrows indicate action potentials that 

are to be extracted. (b): Signal after matched filtering, note that the 
areas marked in (a) have become prominent. 

The second feature extraction method, referred to as 
differential absolute value (DAV) is: 

1. Take the absolute value of the data. 
2. Using a windowing technique, find the peak value 

within each 11ms window of data. The 11ms 
window interval is based on the length of the 
result of cross correlating the known action 
potential with itself. 

3. Low pass filter the data. 
4. Numerically calculate the derivative of this data 

set.

From these extracted features, the spatial gradients in the 
circumferential and longitudinal forearm directions were 
calculated, using a simple 2-point approximation. To counter 
the loss of information at some sites due to poor electrode 
contacts the remaining data was interpolated to form a 
complete surface over the arm.  
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Fig. 3.   Circumferential derivatives, using feature IAV 

Fig. 5.   Circumferential derivatives, using feature DAV 

Finally, a series of representative time points were chosen 
for each grasp type, and the feature extraction method and 
derivative direction were computed. The difference of 
means infers the change in electrical activity when 
performing one grasp type as opposed to another. The 
difference of means between grasp types were calculated. 
The points where this difference was found to be highest 
were taken as the optimal electrode sites for this 
differentiating between the two grasps. 

III. RESULTS AND DISCUSSION

Statistical analysis of the data was carried out using R for 
Windows version 2.8.1. The Levene equal-variance test was 
used to check for equal variance between each grasp type, 
and in all cases there was extremely strong evidence that the 
variances were not equal. Using either feature, with 
derivatives taken in either direction did not change this 
result. As a result, the data was transformed. However after 
using a logarithmic transform, the data still did not have 
equal variance. As a result, 2-way Anova could not be 
performed. The final results are presented as the difference 
of means between grasp types.

Fig. 4.   Longitudinal derivatives, using feature IAV 

Fig.6.   Longitudinal derivatives, using feature DAV 

The absolute value of difference in means for each 
location has been plotted in figures 3-6. The solid lines on 
these figures represent the differences in means, while the 
dashed lines represent difference in means + 1 standard 
deviation. Each location refers to a specific point in the arm, 
starting from a point just distal to the elbow (location 1) and 
heading to a point just proximal to the head of the ulna 
(location 6). The locations then move around the posterior 
surface of the forearm (counter-clockwise), such that 
locations 15-16 are in the middle of the extensor 
compartment, locations 32-33 are halfway along the radius 
bone, and locations 54-55 are in the middle of the flexor 
compartment. This means that in general, a location with a 
higher number will be further counter-clockwise from the 
ulna. 

Some observations can be made from these Figures 
Firstly, the standard deviation of the difference of the means 
for feature DAV is generally much larger than for feature 
IAV. This indicates that measurement scatter will be higher 
for DAV and therefore this feature may not provide the best  
inter-grasp discrimination. Secondly, there are certain 
locations for each direction of derivatives that show 
reasonable difference in mean values for IAV. 
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In order to understand the physical representation of these 
results, the locations have been mapped back onto the 
geometry of the arm in Fig. 7. Superimposed onto the 
geometry are markers corresponding to the results in each of 
Fig. 3-6. The relative sizes of the markers indicate the 
strength of the difference of means. 

From this Figure, we can see that regions around the wrist 
would be best for using circumferential derivatives (circles 
and squares), while regions around the elbow would be best 
for using longitudinal derivatives (triangles left and right). 

Fig. 7.   Difference in means for each of IAV and DAV, both 
circumferential and longitudinal. The relative sizes of the markers 

indicate the strength of the difference of means. 

The wrist is the only place in the forearm where the 
thumb muscles are close to the surface of the skin [7]. As the 
thumb is responsible for a majority of the grasp forming, it 
is likely that there would be points in this region that would 
show large changes when a grasp type is changed. This is 
seen in the circumferential derivative data; however it is 
surprising to find that for longitudinal derivatives the 
majority of the useful sites are found closer to the elbow. 
Given that muscles in the forearm run approximately 
longitudinally [7], these derivatives would be expected to 
represent action potentials running the length of the muscle 
fiber [8]. This could represent a region where rotator 
muscles run, or it is possible that there are subject specific 
characteristics with the subject. Without further data, no 
conclusions can be drawn from the longitudinal derivatives. 

IV. CONCLUSION

This work demonstrates the capability of a system to 
optimize electrode placement in order to distinguish between 
pre-defined actuation patterns. Though only limited data sets 
are presented here, this system has the potential to extend to 
any user-designed actuation pattern. To this end, current and 
future work involves repetition of the experiments 
presented, along with identification of optimal electrode 
placement for other grasp types. 
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