
  

 

Abstract—Extension of one-dimensional signal analysis to 

two-dimensional image analysis could accelerate conventional 

methods of high-throughput screening in the discovery of new 

pharmaceutical agents. This work describes a first step taken 

towards this goal – the evaluation of image-analysis based 

estimation strategies of the diffusion coefficient of a single 

molecule transported within a microfabricated flowcell. A 

computer simulation of single-molecule imaging by a 

charge-coupled device (CCD) camera is used to determine if it is 

possible to distinguish three different types of molecules with 

different diffusion coefficients. The Gaussian fitting algorithm 

finds the variance of the transverse trajectory, which increases 

linearly with the diffusion coefficient; the path analysis 

algorithm determines the diffusion coefficient from cumulative 

summation of the squared displacement along the imaged path; 

the detector area analysis algorithm determines the number of 

resolvable positions or pixels in the imaged trajectory. Of the 

three methods, the path analysis strategy appears to provide the 

most reliable measure of diffusion coefficient with relative error 

of 13.6% and 6.4% between single molecules with diffusion 

coefficients of 2.85e-7 and 1.425e-7 cm2/s. The detector area 

analysis method can statistically distinguish between single 

molecules with diffusion coefficients of 5.7e-7 and 1.425e-7 cm2/s 

at the p0.05 level. 

I. INTRODUCTION 

IGH-THROUGHPUT screening (HTS) methods are 

currently the focus of extensive research and 

development in the creation of bioanalytical tools for the 

rapid discovery of new pharmaceutical agents. Fluorescence 

correlation spectroscopy (FCS) is a commonly used 

technique in HTS. The development rate of new 

pharmaceutical compounds in recent years has greatly 

accelerated due to the creation of novel protein adaptation 

methods like combinatorial biosynthesis [1] and directed 

evolution [2]. However, one of the major roadblocks against 

efficient drug discovery is the backlog of the large number of 

potential compounds needing to be screened for their 

therapeutic potential. Therefore, an obvious need exists for 

developing new and improved HTS techniques to mitigate 

this backlog. 

Our long-term goal is to accelerate conventional methods 

of rapid bioanalysis and enable novel, rapid bioanalysis 
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methods by capitalizing upon image analysis methods 

designed for single-molecule imaging and tracking. This goal 

is underpinned by the central hypothesis that a substantial 

increase in throughput and information content for these 

assay methods will be realized by extending one-dimensional 

signal analysis of fluorescence counts versus time to 

two-dimensional image analysis. In this paper, we offer one 

example of potential bioassay improvement, the analysis of 

CCD images obtained by a 2D FCS analogue. The FCS 

analogue was chosen because it is a means of measuring the 

diffusion coefficient of a molecule and chemical binding 

kinetics, both of which are valuable information in HTS. For 

example, in HTS one may aim to quantify the fraction of 

molecules with different diffusion coefficients, such as small 

fluorescently labeled ligands and ligands bound to a large 

protein. The identification of a single molecule from a 

measure of its diffusion by FCS is subject to large errors [3], 

but a 2D image provides greater information content than the 

1D signal versus time and hence has the potential for enabling 

more rapid bioanalysis.  

Means for a faster rate of travel of molecules through the 

detection zone are also examined by using electro-osmosis to 

create bulk solution flow rather than relying only on diffusion. 

The potential increase in information content and analysis 

throughput that this technique is expected to provide is 

appealing and bodes well for substantially decreasing the 

experimental cost and the time of current HTS methods based 

on FCS. 

In this paper, we compare and contrast three different 

image analysis methods for estimating the single-molecule 

diffusion coefficient based on computer modeling. We have 

created a single-molecule imaging simulation to evaluate the 

feasibility of single-molecule diffusion estimation within a 

CCD image. Then we implement the three image analysis 

algorithms onto a Region of Interest (ROI) manually selected 

from the images created with this model representing the 

CCD frame. Three different diffusion coefficients were set up 

for each of the three image analysis algorithms, and our 

objective was to compare and contrast each analysis 

algorithm’s capability of separating different image streaks 

with different diffusion coefficients.   

 

II. BACKGROUND 

A. Random Walk 

The path traced by a freely diffusing single molecule in a 

liquid could be modeled as a random walk. The path length, 
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Fig. 1. Model of single-molecule diffusion within a CCD frame, and 

the ROI selection (green lines around the “streaks”). Each “streak” 

represents a single fluorescent molecule moving during a frame 
integration time. Two ROI selection methods were used, one is 

following the outline of the streak (the left one), and one is drawing a 

quadrangle to cover the whole steak inside (the right one). 

 

therefore, is distributed according to a normal distribution. 

When setting up the starting point of the single-molecule 

diffusion as the coordinate origin, the diffusion distance has 

the relationship with diffusion time as below [4] 

                                 
2[ ] 2E r Dt             (1) 

where E[] denotes the expectation value, r is the distance 

between the current diffusion position and the origin, D is the 

diffusion coefficient, and t is the diffusion time. If we 

consider a series of times 

                            , 0,1,2,...,t nT n N                        (2) 

where T is the step time, we can cumulatively sum up the 

squared distance during each step time as below 

                                     
2 2

0

N

n

n

L r


                                    (3) 

where
2[ ] 2nE r DT . Thus, if we plot L

2
 versus the number 

of steps n, theoretically a straight line with slope 2DT would 

be obtained, by which the diffusion coefficient could be 

estimated. 

B. Previous Work  

Single-molecule detection (SMD) has been of interest 

recently in both medical assays and DNA sequencing [5]. 

Bunfield and Davis [6] proposed a Monte Carlo simulation of 

single-molecule detection, which is useful for improving 

one’s quantitative understanding of the trade-offs and 

limitations that photophysical and instrumental parameters 

play in the choice of experimental setup, and for optimizing 

the choice of parameters for a particular SMD application. Xu 

and Yeung [7] took advantage of the analog-to-digital 

conversion time of a CCD camera to generate a smeared 

image of single-molecule emission, by which they realized 

the direct measurement of molecular diffusion coefficients 

and unimolecular photodecomposition rates for single 

fluorophores in free solution. However, attempts to image 

and track single moving molecules in free solutions have met 

with limited success due to diffusion of molecules out of the 

depth of field [8] and within the image plane [7], both of 

which limit tracking time. These problems originally limited 

the use of single molecule tracking to large, slowly-diffusion 

substances such as proteins and viruses [9], giving a method 

termed single-particle tracking (SPT) [10]. One approach to 

overcome this limitation is to restrict the volume in which the 

molecule may diffuse, thus increasing the observation time.  

An important difference between SPT and our algorithms 

is that, in SPT, it is assumed the movement of a particle of 

interest occurs on a time scale much slower than the image 

integration time [11]. Our simulated image of a molecule that 

moves over certain distance of the view is within one frame 

exposure period, while in SPT, multiple frames are used to 

locate and track single molecules. Thus, if estimation of 

single-molecule diffusion parameters could indeed be 

obtained from a single frame exposure, the potential for 

accelerating HTS is significantly increased.  

Single-molecule imaging and tracking are not trivial and 

require judicious selection of equipment and experimental 

parameters. A commonly-used strategy, fluorescence 

microscopy requires an excitation laser with 10-20 mW 

output power at the fluorophore wavelength(s). Prior to 

investing time and equipment in an experiment, it is helpful to 

first assess the likelihood of successfully imaging a particular 

type of biomolecule, based on the required experimental 

conditions and equipment specifications, by using a 

simulation. Our simulation models the main features of 

fluorescence imaging, including the photophysical properties 

of fluorescent molecules, laser-molecule interactions, effects 

of electrical and pressure fields on these molecules in solution, 

the use of channels to constrain diffusion (with boundary 

conditions that assume reflection from channel walls), CCD 

camera pixilation and read-out noise, and fluorescence 

collection optics.  

III. MATERIALS AND METHODS 

A. Simulation and ROI selection 

The simulation (written in MATLAB) includes variables 

representing molecule diffusion, CCD specifications, 

flowcell channel dimensions and boundaries, molecule 

photophysical properties, laser parameters, and emission 

optics. A typical image (100×100 pixels, microscope NA = 

1.2) created with this model representing a single CCD frame 

is shown in Fig. 1. This model simulates molecules (30-base 

ssDNA tagged with Rhodamine 6G) freely diffusing within a 

20 µm-wide, 100nm-deep flowcell microchannel. A uniform 

bulk flow is present (500 µm/s, from top to bottom in the 

image). In the frame, two single molecules are present. One 

(represented by the track on the right) has moved 

three-fourths of the way from the top of the frame (about 15 

µm) within a 40-ms frame acquisition time and then 

experienced photodestruction and stopped emitting photons, 

while the second molecule (on the left) moves outside of the 

field of exposure during the CCD frame exposure time period. 

The main function of this simulation is to iterate through a 

loop, which represents a discrete period of time. Within each 

iteration or time step, a fluorescent molecule is allowed to 

move due to uniform flow, electrophoretic forces, and 

diffusion, while emitting photons according to the 

interactions of this molecule with an excitation beam of light. 

These emitted photons fall on the CCD pixels with a 

probability given by the point spread function (PSF) of the 

imaging optics. Some photons are not detected due to optical 
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    (a)                                                                                (b)                                                                               (c) 

Fig.  2. Three CCD frames of the diffusion single molecules with different diffusion coefficients. (a) is the simulation CCD frame of 30-base ssDNA tagged 

with Rhodamine 6G, with the diffusion coefficient of 5.7 × 10-7 cm2/s; (b) is the simulation of a single molecule with half of the diffusion coefficient as in 
(a), which is 2.85 × 10-7 cm2/s; (c) is the simulation of a single molecule with one-fourth of the diffusion coefficient as in (a), which is 1.425 × 10-7 cm2/s. 

  
                            (a)                                                        (b) 
Fig. 3. (a) is the distribution of the Gaussian fitting variances (in units of 

pixels squared) of three different single molecules. (b) is the distribution of 

the detector area (in units of pixels per step time, step time = 4e-4 s) of the 
three different molecules.  
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transmission losses and the detector quantum efficiency. 

Finally, noise counts modeled with Poisson statistics are 

added to the CCD pixels, to represent read-out noise and 

background scattering.  

Two ROI selection methods were used as shown in Fig. 1. 

The “following the streak outline” method was designed for 

the image analysis Algorithm B (see section III.B), which 

could effectively decrease the interference of noise in 

computing the centroids of the single-molecule streaks. The 

“drawing-quadrangle” method was designed for both of 

Algorithm A and Algorithm C, which could help the analysis 

algorithm focus on the molecule-activity-related areas and 

obtain all the information of the streaks. 

B. Image analysis algorithms 

We designed three image analysis algorithms to estimate 

the single-molecular diffusion coefficient based on the CCD 

images.  

1) Algorithm A (Gaussian fitting) 

This algorithm is based on the Gaussian fitting method, and 

it was originally inspired by the observation that a smaller 

molecule with greater diffusion coefficient generally 

generates a wider transverse streak than that of a larger 

molecule with smaller diffusion coefficient, as shown in Fig. 

2. Hence, this method is to add the pixel values along the 

column direction inside the ROI and form an 1 × N vector 

containing the summation information for N columns. Then 

we use Gaussian fitting to fit this vector and obtain the 

variance of the fitted curve, which would be used to compare 

the level of diffusion among different single molecules. 

2) Algorithm B (Path analysis) 

The diffusion paths length is related to the diffusion 

coefficient by using (1)–(3). However, it is difficult to 

compute and pick out the exact paths that the single molecule 

has passed through only based on the simulation CCD images, 

so we use this algorithm to reestablish the approximate path 

of the single molecule by following the centroid of each row 

inside the ROI. Then we calculate and cumulatively sum up 

the squared diffusion distance during each step time, plot the 

accumulated squared distance against the number of steps, 

and estimate the diffusion coefficient by calculating the slope 

of the plotted curve. Moreover, the movement caused by bias 

flow in y-direction was removed from each diffusion distance 

within each step to obtain the actual single-molecule 

diffusion.   

3) Algorithm C (Detector area analysis) 

The third algorithm is based on the hypothesis that the 

greater the diffusion coefficient, the more detector area (in 

this case, the detector area corresponds to the number of 

pixels in the CCD frame) that the single molecule will pass 

through within a certain period of diffusion. Therefore, we 

first filter the frame image with a threshold value which has 

been carefully chosen by visual observation to preserve 

enough image information and eliminate the noise, and obtain 

a binary image of the CCD frame; then we sum up the number 

of pixels with the pixel value of 1 and perform the 

normalization. Finally we statistically analyze and compare 

these summation results among the three different diffusion 

coefficients. 

IV. RESULTS 

A. Experiment 1: Tests based on Algorithm A 

Fifty ROIs (fifty different streaks) were selected for each of 

the three different kinds of single molecules with different 

diffusion coefficients, which are the same as the coefficient 

values in Fig. 2. The distribution of the Gaussian fitting 

variances is shown as normalized histograms in Fig. 3 (a). 

The t-test result is shown in Table II. 

B. Experiment 2: Tests based on Algorithm B 

In experiment 2, the same number of ROIs was utilized to 

the same kinds of single molecules as in experiment 1. For 

each kind of molecule, we estimate the ensemble average 
E[L

2
] of the accumulated squared diffusion distance of fifty 

ROIs. The results are shown in Fig. 4. Also, the estimation of 
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Fig. 4. The solid lines are the actual expectation of the 

accumulated squared diffusion distance against the number of 
steps, while the dashed lines are the theoretical curve based on 

(1). The step time is 4.0×10-4 s. 
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TABLE I 
ESTIMATION OF THE DIFFUSION COEFFICIENT OF EXPERIMENT 2 

D1
a=5.7 × 10-7 D2=2.85 × 10-7  D3=1.425 × 10-7 

Slope 3.858e-7 Slope 2.462e-7  Slope 1.516e-7 
R. Err. b 32.3% R.Err. 13.6% R. Err. 6.4% 

        aD1, D2 and D3 are all in the unit of cm2/s 
                bR. Err. is the abbreviation of relative error 

TABLE II 

SUMMARY TABLE OF T-TEST ON EXPERIMENT 1&3 

Exp.1 

(Gaussian 

fitting  

variances) 

 D2 D3 

 p0.05
b t p0.05 t 

D1
a 1.671 0.521 1.664 0.977 

D2  1.671 0.601 

Exp.3 

(Detector 
area) 

 D2 D3 

 p0.05 t p0.05 t 

D1 1.664 0.942 1.667 1.744 

D2  1.660 1.014 
         aD1, D2 and D3 are of the same values as in Table I 
     bp0.05 is based on an independent two-sample t-test. The null hypothesis is      

that   the mean of one sample is equal to the mean of the other sample, and 

the significance level is at 5% 
     

 

the diffusion coefficient by calculating the slope of the plotted 

curve was shown in Table I. 

C. Experiment3: Tests based on Algorithm C, threshold=3 

pixel value 

As the same in experiment 1, fifty ROIs were selected for 

three different diffusion coefficients. The distribution of the 

detector area is shown as normalized histograms in Fig. 3 (b). 

The t-test result is shown in Table II. 

V. DISCUSSION 

The objective of this paper is to compare and contrast the 

capabilities of three different image analysis algorithms to 

separate three kinds of single molecules with different 

diffusion coefficients. Both experiment 1 and experiment 3 

verified the theory and hypothesis of Algorithm A and 

Algorithm C respectively, by showing that the mean value of 

the Gaussian fitting variances and the detector area vary with 

different diffusion coefficients. In experiment 1, the means of 

the Gaussian fitting variances vary approximately linearly 

with the assigned diffusion coefficient, but all the t-tests 

among the different diffusion coefficients failed to reject the 

null hypothesis at the 5% significance level, which means that 

none of the three distributions in Fig. 3 (a) is separable with 

each other. In experiment 3, no linear relationship could be 

found among the means; however, in the t-test between D1 

and D3, the t value of 1.744 is greater than the p0.05 which is 

1.667, which means that the null hypothesis was rejected at 

the 5% significance level, and the distribution of D1 and D3 in 

Fig. 3 (b) are separable with each other. Thus, an unknown 

diffusion coefficient generated either by distribution of D1 or 

D3 could be differentiated by Algorithm C. Experiment 2 

indicated that the most promising results for direct estimation 

of the diffusion coefficient are from the slope of the curve. 

Especially, for single molecules with D2 and D3, the relative 

error between the calculation of the slope and the theoretical 

value of diffusion coefficient is 13.6% and 6.4% respectively, 

which suggests a potential method of quantitative estimation 

of an unknown diffusion coefficient from the CCD images. 

One cause of the large standard deviation and less 

satisfying t-test of the above experiments is the multiple and 

complicated shapes of image streaks caused by the freely 

diffusion single molecules. Currently, all types of streaks 

without specific selections were used in all the experiments in 

order to obtain as much information as possible, which would 

also introduce considerable interferences into the system. 

Another cause, especially for experiment 2, is the uniform 

choice of the microscope magnification. In Fig. 2, the 

transversal width of the streak decreases with the reduction of 

the diffusion coefficient; however, once the lateral path 

variance stays within a pixel, further decrease in diffusion is 

harder to detect. Therefore, an improved ROI selection 

method with better signal-to-noise and directional extraction 

of ROI, and an adaptive magnification method with better 

display of the lateral path variance of the streaks will be 

considered in future work. 

REFERENCES 

[1] H. G. Menzella and C. D. Reeves, “Combinatorial biosynthesis for drug 
development,” Curr. Opin. Microbiol., vol. 10 (3), pp. 238–245, June 

2007. 

[2] Y. Yoshikuni, T. E. Ferrin, and J. D. Keasling, “Designed divergent 
evolution of enzyme function,”  Nature, vol. 440, pp. 1078–1082, Apr. 

2006. 

[3] J. Enderlein and M. Kollner, “Comparison between time-correlated 
single photon counting and fluorescence correlation spectroscopy in 

single molecule identification,” Bioimaging, vol. 6, pp. 3-13, Jan. 1998. 

[4] C. W. Therrien, Discrete Random Signals and Statistical Signal 
Processing. Englewood Cliffs, NJ: Prentice Hall, 1992, pp. 95–99. 

[5] R. A. Keller et al., “Analytical applications of single-molecule 

detection,” Anal. Chem., vol. 74, pp. 316A–324A, June 2006. 
[6] D. H. Bunfield and L. M. Davis, “Monte Carlo simulation of a 

single-molecule detection experiment,” Applied Optics, vol. 37, pp. 

12–20, Apr. 1998. 
[7] X. H. Xu and E. S. Yeung, “Direct measurement of single-molecule 

diffusion and photodecomposition in free solution,” Science, vol. 275, 

pp. 1106–1109, Feb. 1997. 
[8] T. Kues, A. Dickmanns, R. Luhrmann, R. Peters, and U. Kubitscheck, 

“High intranuclear mobility and dynamic clustering of the splicing 

factor U1 snRNP observed by single particle tracking,” Proc. Natl. 
Acad. Sci. U. S., vol. 98, pp. 12021–12026, Oct. 2001. 

[9] U. Kubitscheck, O. Kuckmann, T. Kues and R. Peters, “Imaging and 

tracking of single GFP molecules in solution,” Biophysical Journal, vol. 
78, pp. 2170–2179, Apr. 2000. 

[10] M. J. Saxton, “Single-particle tracking: the distribution of diffusion 

coefficients,” Biophysical Journal, vol. 72, pp. 1744–1753, Apr. 1997. 
[11] N. Destainville and L. Salome, “Quantification and correction of 

systematic errors due to detector time-averaging in single-molecule 

tracking experiments,” Biophysical Journal, vol. 90, pp. L17–L19, Jan. 
2006. 

1399


	MAIN MENU
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order
	Themes and Tracks

