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Abstract— Fluorescently tagged proteins such as GFP-PCNA
produce rich dynamically varying textural patterns of foci
distributed in the nucleus. This enables the behavioral study
of sub-cellular structures during different phases of the cell
cycle. The varying punctuate patterns of fluorescence, drastic
changes in SNR, shape and position during mitosis and abun-
dance of touching cells, however, require more sophisticated
algorithms for reliable automatic cell segmentation and lineage
analysis. Since the cell nuclei are non-uniform in appearance,
a distribution-based modeling of foreground classes is essen-
tial. The recently proposed graph partitioning active contours
(GPAC) algorithm supports region descriptors and flexible
distance metrics. We extend GPAC for fluorescence-based cell
segmentation using regional density functions and dramatically
improve its efficiency for segmentation from O(N4) to O(N2),
for an image with N2 pixels, making it practical and scalable
for high throughput microscopy imaging studies.

I. INTRODUCTION

Quantitative analysis of the spatial distribution and tempo-

ral dynamics of proteins within living cells is an important

step in understanding the interaction between sub-cellular

processes and cell behavior. The analysis of cell cycle

dependent changes in living cells is only now becoming

feasible with the discovery of suitable markers that allow

identification of the various cell cycle stages in proliferating

cells [6]. Current experimental techniques use fusion proteins

in combination with fluorescence time-lapse microscopy

imaging to simultaneously label the nucleus for cell detection

and mark sub-cellular structures in the nucleus to identify the

cell cycle phases. However, depending on the type of labeling

used there is wide variability in the textural appearance of the

fluorescence markers in the nucleus and possibly throughout

the cell, presenting a new set of challenges not anticipated by

previously developed approaches for cell segmentation and

tracking.

The focus of this paper is on fluorescent labeling using GFP-

PCNA which enables cell cycle stages to be distinguished
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Fig. 1: Process flow chart for fluorescence-based cell segmentation and
lineage construction.

by the associated characteristic sub-nuclear localization of

PCNA at different points of the cell cycle in living cells:

M-phase or mitosis, followed by G1-phase, early, mid and

late S-phase, and G2-phase. GFP-PCNA also produces the

most complex distribution of foci patterns across the cell

cycle particularly during different stages of the S-phase, but

is fairly homogenous during G1- and G2-phases, and very

diluted during M-phase.

In order to identify cell cycle phases, individual nuclei need

to be detected, segmented and tracked accurately through

multiple cycles of cell division. While the varying and

complex staining patterns through the cell life cycle increases

GFP-PCNA’s cell cycle phase discrimination power, also

results in increased complexity for cell detection compared

to other fluorescently tagged histons like H2B-GFP.

In this paper we describe a novel technique for fluores-

cent nuclei segmentation using a novel fast implementa-

tion of multi-phase graph partitioning active contours. An

appearance-based multiple hypothesis tracking algorithm is

used to identify the lineage of proliferating cells. The overall

proposed system flow is shown in Figure 1. In this paper we

do not try to accurately identify the specific stages of the cell

cycle but focus on accurately segmenting and tracking the

same cell as it undergoes significant appearance and shape

changes. The computational challenges include spatiotem-

porally varying fluorescence labeling patterns, dramatic de-

crease in (intensity) SNR during mitosis, fluctuation in SNR

across the cell cycle and spatially across the cells within a

frame, significant deformations in shape particularly during

mitosis with the daughter cells having large spatial separation

from the mother nucleus, and separation of touching cells.

II. SEGMENTATION USING LEVEL SET-BASED FAST

GRAPH PARTITIONING ACTIVE CONTOURS (FASTGPAC)

There has been extensive recent work on developing a

variety of algorithms for automatic cell segmentation and

tracking using transmitted light and fluorescent time-lapse

microscopy imaging [3], [5], [7]–[10], [15]. Reliable seg-

mentation of nuclei is an important requirement for the

analysis of both static properties and dynamic behaviors

of cells/nuclei. While simple approaches such as intensity

thresholding or clustering can be used for segmentation of

some images, they fail to produce reliable segmentation

for biomedical images with often low signal to noise ra-
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tio, indistinct object borders, significant topological shape

changes, varying object and background intensities. For the

segmentation of fluorescently tagged HeLa cell nuclei we

used level set-based multi-phase fast graph partitioning active

contours (FastGPAC). FastGPAC is our efficient implemen-

tation of graph partitioning active contours (GPAC), that

reduces the O(N4) computational complexity and memory

requirements of the original GPAC algorithm to O(N2)
computational complexity and constant memory requirement

(O(nL)) where N2 is the image size, L is number of his-

togram bins, and n is the number of phases. Histogram-based

region-descriptors (instead of means or variances which may

result in poor representation, canceling or blending effects)

and flexible distance measure selection provide GPAC and

FastGPAC several advantages compared to the widely used

Chan & Vese’s region-based active contour model [4].

A. GPAC-Graph Partitioning Active Contours

Graph partitioning active contours (GPAC) is introduced

in [12] as a new curve evolution framework. This variational

framework is based on pairwise similarities or dissimilarities

between points. The initial across region cuts cost in [12]

is recently reformulated in terms of pairwise dissimilarities

within regions in [1]. GPAC can be used within paramet-

ric snake-based or implicit level set-based active contour

paradigms. Level set-based active contours provide advan-

tages such as eliminating the need to reparameterize the

curve and automatic handling of topology changes [11]. In

level set-based active contour methods, a curve C (C = ∂r,

boundary of an open set r ∈ Ω) is represented implicitly via a

Lipschitz function φ : Ω 7→ R by C = {(x, y)|φ(x, y) = 0}.

Heaviside function is used as an indicator function for the

points inside and outside the curve C. The GPAC energy

function is written as:

EWR =

∫∫

Ω

∫∫

Ω

w(p1, p2)H(φ(p1))H(φ(p2))dp1dp2

+

∫∫

Ω

∫∫

Ω

w(p1, p2)
(

1−H(φ(p1))
)(

1−H(φ(p2))
)

dp1dp2

(1)

where H(φ) and 1 − H(φ) refer to interior and exterior

regions of the curve C (Ri(C) and Ro(C)) and w(p1, p2)
is a dissimilarity measure between points p1 and p2.

Additional geometric properties or constraints can be intro-

duced into curve evolution by multiplying the two integrals

in Eq. 1 with weights α and β [1], [12]. For regularization

mean curvature flow K = div ∇φ

|∇φ| [4] is used. Complete

curve evolution equation for GPAC then becomes:

∂φ(p2)

∂t
= δ(φ(p2))[λ2β

∫∫

Ω

w(p1, p2)
(

1 − H(φ(p1))
)

dp1

− λ1α

∫∫

Ω

w(p1, p2)H(φ(p1))dp1 + µdiv(
∇φ(p2)

|∇φ(p2)|
)]

(2)

which is discretized as:

∆φ(p2)

∆t
= δǫ(φ(p2))[λ2β

∑

p1∈Ro(C)

w(p1, p2)

−λ1α
∑

p1∈Ri(C)

w(p1, p2) + µK)] (3)

B. FastGPAC-Fast Graph Partitioning Active Contours

While powerful in terms of region description, heavy

computational and memory requirements prevent GPAC’s

direct application to large images. Some approximations

of the algorithm have been proposed in [12] and [1] to

alleviate this problem by partitioning the input image into

regular blocks or into ”superpixels” and by calculating the

dissimilarities at block or superpixel level respectively.

The bottleneck in the original GPAC implementation, is the

calculatation of the 2D inside and outside sums:
∑

po∈Ro(C)

w(po, p2) and
∑

pi∈Ri(C)

w(pi, p2) (4)

where dissimilarity of each point p2 to each inside point

pi and to each outside point po are computed and summed

over the corresponding regions. For speed up, dissimilarity of

every image point to every image point are pre-computed and

stored in a N2×N2 lookup table W where N2 is the image

size. But this O(N4) table quickly becomes impractical for

large images (i.e. over a terabyte of memory is required for

an 1024 × 1024 grayscale image).

FastGPAC speeds up the integral/sum computations by using

two additional data structures, histograms hi and ho for

Ri(C), Ro(C) interior and exterior regions of the curve C
respectively. When the point to point (dis)similarity measure

w(p1, p2) does not incorporate spatial distance between

points p1 and p2, w(p1, p2) can be rewritten as:

w(p1, p2) ≡ D(F (p1), F (p2)) (5)

where F (p) is a feature extracted from the point p(x, y),
and D is a similarity/dissimilarity measure defined on F

(i.e. for absolute grayscale intensity difference, w(p1, p2) =
|I(p1)− I(p2)|, feature F (p) is grayscale intensity I(p) and

the dissimilarity measure D is L1 metric.)

GPAC Region Sum Theorem: For cases where the

(dis)similarity measure w(p1, p2) does not incorporate spa-

tial distance between points p1 and p2, the 2D sums,
∑

pi∈Ri

w(pi, p2) and
∑

po∈Ro

w(po, p2), can be reduced to 1D

sums independent of the spatial size or shape of the regions

Ri(C) and Ro(C):

∑

pr∈Rr

w(pr, p2) ≡

L−1
∑

j=0

hr(j) × D(F (p2), j) (6)

where hr is the histogram of the feature F in the rth region

Rr, D() is a (dis)similarity measure, L is number of bins

in hr, and hr(j) =
∑

pr∈R∧F (pr)=j

1 is the jth bin of hr

corresponding to the number of points pr ∈ Rr whose

feature F (pr) = j. In the more general case, D(F (p2), j) is
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replaced by D(F (p2), C(j)) where C(j) is a representative

value for the histogram bin h(j).
See [2] for proof and detailed complexity analysis.

Using the GPAC region sum theorem, FastGPAC transforms

the discretized curve evolution equation of GPAC Eq. 3 into:

∆φ(p2)

∆t
= δǫ(φ(p2))

[

λ2β

L−1
∑

j=0

ho(j) × D(F (p2), j) (7)

− λ1α

L−1
∑

j=0

hi(j) × D(F (p2), j) + µK
]

= δǫ(φ(p2))
[

L−1
∑

j=0

[λ2β ho(j) − λ1α hi(j)] × D(F (p2), j) + µK
]

This transformation reduces the original O(N4) GPAC com-

putational complexity (O(N2) for N2 pixels) to O(LN2)
FastGPAC computational complexity(O(L) for N2 pixels))

C. Extension to Multi-Phase

The two phase segmentation scheme described above

is appropriate for segmentation of single class ob-

jects/appearances from a single class background. Because

of the variability in nuclei appearances during the different

stages, we use a multi-phase in this case 4-phase segmenta-

tion. This not only improves nuclei detection, but also gives a

preliminary information on cell cycle phase, that is exploited

during cell tracking and lineage construction.

In [1], GPAC is extended to multi-phase in a way similar

to Vese and Chan’s multi-phase extension [13] of their two-

phase level set image segmentation algorithm [4]. In this

scheme, 4-phase (2 level set) GPAC energy function is

written as:

EWR =

∫∫

Ω

∫∫

Ω

w(p1, p2)[χ1(p1)χ1(p2)]dp1dp2 (8)

+

∫∫

Ω

∫∫

Ω

w(p1, p2)[χ2(p1)χ2(p2)]dp1dp2

+

∫∫

Ω

∫∫

Ω

w(p1, p2)[χ3(p1)χ3(p2)]dp1dp2

+

∫∫

Ω

∫∫

Ω

w(p1, p2)[χ4(p1)χ4(p2)]dp1dp2

where the indicator functions χ1−4 for the four regions are:

χ1(p) = H(φ1(p))H(φ2(p)); χ2(p) = H(φ1(p))Hc(φ2(p))

χ3(p) = Hc(φ1(p))H(φ2(p)); χ4(p) = Hc(φ1(p))Hc(φ2(p))

and Hc(φ(p)) ≡ (1 − H(φ(p))). Curve evolution for this

multiphase energy function is then:

∂φ1(p2)

∂t
= δ(φ(p2))

{

H(φ2(p2))· (9)

[

∫∫

Ω

w(p1, p2)χ3(p1)dp1 −

∫∫

Ω

w(p1, p2)χ1(p1)dp1

]

+ (1 − H(φ2(p2)))·
[

∫∫

Ω

w(p1, p2)χ4(p1)dp1 −

∫∫

Ω

w(p1, p2)χ2(p1)dp1

]}

∂φ2(p2)

∂t
= δ(φ(p2))

{

H(φ2(p2))· (10)

[

∫∫

Ω

w(p1, p2)χ2(p1)dp1 −

∫∫

Ω

w(p1, p2)χ1(p1)dp1

]

+ (1 − H(φ2(p2)))·
[

∫∫

Ω

w(p1, p2)χ4(p1)dp1 −

∫∫

Ω

w(p1, p2)χ3(p1)dp1

]}

Note that the normalization and regularization terms are
ignored for simplicity of the notation, otherwise these terms
needs to be included like in Eq. 2. As in the 2-phase case,
using the GPAC region sum theorem, FastGPAC transforms
this curve evolution equation into its more efficient form:

∆φ1(p2)

∆t
= δǫ(φ1(p2))

n

H(φ2(p2)) ·

L−1
X

j=0

[h3(j) − h1(j)]D(F (p2), j)

+ (1 − H(φ2(p2))) ·

L−1
X

j=0

[h4(j) − h2(j)]D(F (p2), j)
o

(11)

∆φ2(p2)

∆t
= δǫ(φ2(p2))

n

H(φ1(p2)) ·

L−1
X

j=0

[h2(j) − h1(j)]D(F (p2), j)

+ (1 − H(φ1(p2))) ·

L−1
X

j=0

[h4(j) − h3(j)]D(F (p2), j)
o

(12)

where h1, .., h4 denote the regional histograms correspond-

ing to the regions χ1, .., χ4.

D. Preprocessing, Shape Analysis, Preclassifier

Preprocessing step filters the raw image sequence using

mathematical morphology operations. Noise is reduced, nu-

clei borders are smoothened, and intra-cellular details are

reduced using morphological opening and closing by recon-

struction operations [14]. Shape analysis and preclassifier

module, converts the 4-phase output of the segmentation

module, to a 2-phase mask with detached blobs and some

preliminary blob class information to be used by tracking

module. Simply flattening the 4-phases into 2-phases by

merging three foreground phases of the 4-phase mask would

not only result in loss of information but also in unwanted

nuclei merges which would disrupt the tracking process. The

module recolors 4-phase masks using mean phase intensity to

ensure consistent labeling (as black-red-green-yellow in or-

der of increasing intensity), since level set phase assignment

can change from frame to frame. Once the consistent labeling

is obtained, a rule-based system consisting of morphology,

topology, and shape operators, convert the 4-phase mask

into 2-phase mask, detach the merged blobs, and classify

the blobs based on intensity distribution. These classes do
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not necessarily correspond to the cell cycle phases, but they

nevertheless provide clues to the tracking module about pre-

mitosis and post-mitosis cells.

III. TRACKING-BASED LINEAGE ANALYSIS

Persistent tracking is an important step in long term

behavior analysis such as cell cycle analysis and lineage

construction. For lineage analysis we use an extended version

of our explicit correspondence-based cell tracking algorithm

[3], [9]. This enables us to efficiently control each cell

association and handle large amounts of displacements. The

tracking module consists of two main sub-modules: (1)

Correspondence Analysis, and (2) Segment Generation and

Lineage Construction.

(1) In Correspondence Analysis Module a graph structure

called ObjectMatchGraph is formed where connected com-

ponents/blobs produced by shape analysis and preclassifier

module constitute the nodes of the graph. The link of

the graphs are established by cell-to-cell temporal corre-

spondence analysis process which consists of four major

steps: 1) object to object distance computation; 2) match

confidence matrix construction; 3) absolute match pruning;

4) bi-directional relative match pruning [9].

As association strategy a multi-hypothesis approach with

delayed decision is used. Rather than picking a single best

match, for each node many possible matches are kept and

gradually pruned, as more information becomes available.

Besides one-to-one object matches, this scheme supports

many-to-one, one-to-many, many-to-many, one-to-none, or

none-to-one matches that may result from false detections, or

false associations, segmentation errors, occlusion, entering,

exiting, or dividing cells.

(2) The Segment Generation and Lineage Construction Mod-

ule has three main steps:

(a) Node Classification: The cells/objects in each frame

(nodes in the ObjectMatchGraph) are classified based

on their number of parent and child objects.

(b) Segment Generation: Trajectory segments are formed

by tracing the nodes of the ObjectMatchGraph. A

linked list of inner nodes (one parent-one child), start-

ing with a source (no parent) or split (many children)

type node and ending with a merge (many parent) or

sink (no child) type node, are identified and organized

in a data structure called SegmentList.

(c) Segment Labeling & Lineage Construction: Extracted

trajectory segments are labeled using a method similar

to connected component labeling where parents’ labels

are propagated to their children. In case of multiple

parents, if the parents’ labels are inconsistent, then the

smaller label (older trajectory) is kept and a flag is set

indicating the inconsistency.

A final validation and filtering module analyzes trajectory

segments using accumulated evidence such as temporal per-

sistence, size, shape etc. and preliminary blob class informa-

tion produced by Shape Analysis & Preclassifier module.

IV. EXPERIMENTAL RESULTS

Genetically modified human HeLa Kyoto cell lines were

generated and validated to stably express the fused protein

green fluorescent protein-tagged proliferating cell nuclear

antigen (GFP-PCNA). The first step involved creating HeLa

Kyoto lines containing a stably integrated Flp-recombination

site (FRT). This was followed by site-specific integration of

a construct containing the human EF1α promoter to drive

expression of the fusion gene, in this case GFP-PCNA, and

a blasticidin resistance marker gene used for selection of the

transgenic cells flanked by FRT sites.

Live cell analysis was performed by plating the cells on

chambered glass coverslips mounted onto the microscope

stage. Images were acquired every 15 minutes using a Zeiss

LSM 510 Meta laser scanning confocal microscope using the

488 nm laser line of an Argon ion laser at low power. The

spatial dimensions of the images were 1024 x 1024 pixels

with a pixel size of 0.2 x 0.2 micron. Three image sequences

with 174 frames each have been analyzed.

Figure 2 shows sample segmentation results for frames

#1,#33,#121 from the 2TS sequence using 4-phase FastGPAC

method. When the 4-phase segmentation masks are recolored

(according to mean level set phase intensity) as in 3rd row,

some observations on the color scheme can be made i.e. just

before mitosis nuclei appear as solid red blobs (fluorescent

intensity fade), just after mitosis daughter nuclei appear

as red blob with green centers. These observations can be

used during lineage construction as an additional information

besides frame-to-frame cell correspondences. The evolutions

of three cells #3,#7,#13, and their segmentation, tracking

results are zoomed and shown in Figure 3.

Tracking results for Seq.3TS and Seq.5TS are shown in

Figure 4. Nuclei originating from the same cell (through

multiple rounds of mitosis) share the same label and color.

The segmentation and tracking results of Seq:5TS have

been manually validated. Summary of the segmentation and

tracking validation statistics is given in Table I. 157 out of

174 frames were segmented successfully. Among the dis-

carded 17 frames 10 were severely out-of-focus frames and

7 were under-segmented frames. The proposed algorithms

detected a total of 4111 nuclei images in 157 frames, no

nuclei were missed (false negatives in the table are caused

by under-segmentation). Fragmentation caused 6 false splits

and 5 merges. 21 out of 22 mitosis events were detected

successfully.

V. CONCLUSIONS

Current chemical biology methods for studying the spa-

tiotemporal correlation between cell cycle and molecular

TABLE I: Summary of segmentation and tracking statistics for Seq.5TS.

Segmentation Stats Tracking Stats

Cells Ground Truth 4103 Mitosis Ground Truth 22
Cells Detected 4111 Mitosis Detected 21
False Negative 2 False Merges 5
False Positive 10 False Splits 6

Identity Switch 0
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Fig. 2: Sample 4-Phase FastGPAC segmentation results for frames
1,33,121 from the 2TS seq. Top: Original frames; Middle: Level set contours
on the preprocessed image; Bottom: Recolored level set masks (black-red-
green-yellow in the order of increasing average phase intensity).

Fig. 3: Sample tracking result showing two mitosis. Left to right frames
#3,#5,#11,#13 of Seq.2TS
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Fig. 4: Tracking results for sequences 3TS (2D view on the last frame)
and 5TS (3D view).

structures within the cell nucleus use fluorescence-based

imaging of fusion proteins. Often the proteins of interest are

involved in basic cellular processes such as DNA synthesis,

repair, and replication, which produce temporally varying

fluorescence patterns of different sized foci. In the case of

GFP-PCNA fusion proteins during the mitosis stage of the

cell cycle the cell nuclei virtually disappear. The Poisson

imaging noise, lower SNR especially for some phases of

the cell cycle, complex non-homogeneous punctuate textural

patterns, significant shape changes during cell division and

large data volumes required the development of a multi-

class region-based segmentation algorithms with topological

flexibility. The recently proposed GPAC algorithm solves a

graph-based image segmentation problem using an active

contour formulation. We extended the multiphase GPAC

algorithm for fluorescence-based cell segmentation by in-

corporating density functions to capture the variability of

regions for reliable and accurate segmentation. GPAC has

not been previously applied to large biomedical segmentation

applications due to extensive memory and computational

requirements on the order of a few terabytes for a megabyte-

sized fluorescence image. We derive a FastGPAC algorithm

that requires constant memory and is highly scalable for

high-throughput screening of 2D and 3D time-lapse video

microscopy images. Preliminary results indicate that the

multiphase implementation is able to segment and accurately

track the lineage of fluorescently labeled proliferating cells

for more than 32 hours with high precision and recall.

Once the cell trajectories are accurately established then the

recognition and characterization of specific cell cycle phases

can proceed using supervised classification techniques from

pattern recognition and machine learning.
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