
  

  

Abstract— Histopathological examination is one of the most 
important steps in evaluating prognosis of patients with 
neuroblastoma (NB). NB is a pediatric tumor of sympathetic 
nervous system and current evaluation of NB tumor histology is 
done according to the International Neuroblastoma Pathology 
Classification. The number of cells undergoing either mitosis or 
karyorrhexis (MK) plays an important role in this classification 
system. However, manual counting of such cells is tedious and 
subject to considerable inter- and intra-reader variations. A 
computer-assisted system may allow more precise results 
leading to more accurate prognosis in clinical practice. In this 
study, we propose an image analysis approach that operates on 
digitized NB histology samples. Based on the likelihood 
functions estimated from the samples of manually marked 
regions, we compute the probability map that indicates how 
likely a pixel belongs to an MK cell. Component-wise 2-step 
thresholding of the generated probability map provides 
promising results in detecting MK cells with an average 
sensitivity of 81.1% and 12.2 false positive detections on 
average.  

I. INTRODUCTION 
EUROBLASTOMA (NB) is a pediatric tumor of 
sympathetic nervous system. It is the most common 

cancer in infants and approximately 650 patients are 
diagnosed with NB each year in the United States [1]. One 
of the most important indicators for predicting clinical 
behavior and prognosis of patients with this disease is the 
histological examination of biopsy/surgical samples. The 
World Health Organization recommends the use of the 
International Neuroblastoma Pathology Classification for 
categorization of the NB into different prognostic groups [2, 
3]. According to this classification system, tumor histology 
is characterized as either “favorable” or “unfavorable” based 
on age-linked evaluation of morphology. 

One of the most critical steps in histological evaluation is 
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to determine the mitosis-karyorrhexis index (MKI) [3]. MKI 
is defined as the number of tumor cells either in the process 
of mitosis or karyorrhexis. Mitosis is the division of a cell 
into two cells, whereas karyorrhexis is the destructive 
fragmentation of the nucleus of a dying cell. A higher MKI 
usually indicates a higher likelihood for the tumor to be 
unfavorable. It is reported that MYCN oncogene 
amplification, a molecular indicator for predicting 
aggressive tumor progression, is a powerful driving force to 
increase mitotic and karyorrhectic (MK) activities in NB 
tumors [2, 3].  

In clinical practice, MKI is determined after a tedious 
microscopic examination of hematoxylin and eosin (H&E) 
stained tissue slides at high magnifications. The pathologists 
examine areas within the slide and count the number of MK 
cells among 5000 cells. This process is cumbersome and 
often subject to sampling bias due to enormous size of the 
images (up to 120k x 100k resolution). This results in 
considerable inter- and intra-reader variations of up to 20% 
between central and institutional reviewers in NB prognosis 
[4].  

Histopathological image analysis is an emerging field and 
it becoming increasingly popular mostly due to the recent 
developments in the scanning technology, which made it 
possible to digitize the whole tissue slides at high 
magnifications. However, there are several challenges ahead. 
The variations between samples of the same cancer type, 
either due to relatively distinct content or due to the slide 
preparation stages, make it difficult to develop adaptive and 
robust algorithms. Nevertheless, there are a number of 
computerized systems developed for several cancer types 
such as follicular lymphoma [5], prostate cancer [6], and 
breast cancer [7].  

In our previous work for NB prognosis, we also 
developed computerized systems to classify grade of 
differentiation and stromal development [8, 9]. These 
systems operate in a multi-resolution manner and at each 
resolution, perform segmentation based on color and spatial 
information and classification based on texture of the 
particular cytological components in the tissue. The 
promising results reported in these studies showed that it is 
possible to extract objective and precise diagnostic clues that 
will lead to precise histopathological evaluations of tissue 
samples. The MKI component being presented in this study 
will also be incorporated to the existing systems for the 
complete NB Virtual Shimada Classification System. A cell 
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segmentation method has also been proposed, but this is not 
designed to detect MK cells [10]. 

II. DETECTION OF MITOSIS & KARYORRHEXIS CELLS 
The inputs to our system are H&E-stained tissue samples 

digitized at 40× using a ScanScope T2 digitizer (Aperio, San 
Diego, CA). Typically, the resulting digital images have 
very large resolutions up to 120K×100K. To make the 
training and evaluation feasible, we manually cropped ten 
regions of interest (ROI) images associated with different 
NB subtypes, i.e., low MKI (less than 100 cells in MK cells 
among 5000 cells on average), intermediate MKI (between 
100 and 200 MK cells) and high MKI (more than 200 MK 
cells). An expert pathologist verified the content of these 
ROIs and manually annotated the MK cells in each ROI 
image of 888×1472 pixels resolution. These manual 
markings established the ground-truth information and we 
used this information to evaluate the performance of the 
proposed system. Fig. 1 shows some example image regions 
in which MK cells are circled. 

Providing a good contrast between cytological structures 
at cellular level, hematoxylin and eosin (H&E) is one of the 
most widely used staining methods in histology. It dyes the 
nuclear structures with blue-purple hue and protein rich 
regions, such as cytoplasm and extracellular material, with 
bright pink hue. Biologically, MK figures are characterized 
by condensed nuclear material; hence such regions are 
intensively stained with hematoxylin, therefore appearing in 
the slides as very dark blue-purple color (Fig. 1). Mitotic 
figures are more or less rod-shaped with spiked projections 
and absence of a nuclear membrane, whereas karyorrhectic 
cells have fragmented nuclear material usually accompanied 
by condensed eosinophilic cytoplasm. For NB prognosis 
purposes, there is no need to distinguish between mitotic and 
karyorrhectic cells; hence they are detected as one category, 
i.e., MK. 

We used a probabilistic approach for the MK cell 
detection problem. We first applied a pre-processing step to 
bring the dynamic color range of the sample images in the 
database into a common distribution. Then, using samples in 
the training set, we estimated the likelihood functions for 
pixel intensities that correspond to MK cells. Using these 
likelihood functions, we computed the probability maps, in 
which a high probability indicates a higher chance of 
belonging to an MK cell. Finally, using a 2-step component-
wise thresholding, we detected the candidate MK cells. 
Following subsections provide more detailed explanations of 
these steps. 

A. Image Preprocessing 
The staining conditions of the slides vary considerably 

from one slide to another. Hence, after the digitization step, 
images may have quite different dynamic ranges. We used 
histogram equalization to normalize the color distribution 
across slides with different staining conditions [11]. An 
image with ideal staining conditions was determined and the 

dataset was normalized to that color distribution.  
After histogram equalization, we applied the anisotropic 

diffusion to smooth the relatively heterogeneous regions, 
while preserving important edge information [12]. 
Anisotropic diffusion is an iterative smoothing process and 
characterized as follows: 

 

€ 

I(x,y)s+1 = I(x,y)s + λC(x,y)s
T∇I(x,y)s          (1) 

 

where 

€ 

I ∈ {R,G,B} color channels, and 

€ 

I(x,y)s is the 
color channel at step 

€ 

s.

€ 

λ  is a constant that needs to satisfy 

€ 

0 ≤ λ ≤ 0.25  when numerical stability is sustained. 

€ 

∇I(x,y)s = ∇I(x−,y)s,∇I(x+,y)s,∇I(x,y+)s,I(x,y−)s( )T

is a vector of nearest neighbor differences. It is used to 
update the conduction coefficient vector 

€ 

C(x,y)s = c(x−,y)s,c(x+,y)s,c(x,y+)s,c(x,y−)s( )T  at 
each step: 
 

€ 

c(u,v)s = g(∇I(u,v)s)   ,where

€ 

g(∇I) =
1

1+ ∇I κ( )2
. (2) 

 

In our application, we experimentally 
determined

€ 

λ = 0.2,κ =10 .  

B. Computing the Likelihoods 
For the detection of MKI cells, we used the Bayesian 

decision framework, which relies on Bayes’ law for 
conditional probability: 

 

€ 

P(ω j | X) =
p(X |ω j )P(ω j )

p(X)
                    (3) 

 

where 

€ 

X  is the feature vector consisting of color 
information in the red-green-blue (RGB) color space for 
each pixel, and 

€ 

ω j ,

€ 

j = {0,1} indicates either a pixel belongs 
to MKI or not, respectively. 

€ 

P(ω j | X) is the posterior 

probability that a pixel belongs to class 

€ 

ω j  given features 

€ 

X , 

€ 

p(X |ω j ) is the likelihood that a sample of class 

€ 

ω j  

exhibits features 

€ 

x . 

€ 

P(ω j )  is the prior probability of class 

€ 

ω j , and 

€ 

p(X) is the evidence factor, and can be viewed as 
a scale factor that guarantees that the posterior probabilities 
sum to one [13].  

In fact, the evidence term, 

€ 

p(X), is independent of class 
membership. Furthermore, we assume that a priori 

   
 
Fig. 1. Sample image regions, where MKI cells circled. Note the wide 
variation in color information due to the staining differences. 
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probabilities (i.e., probability of a pixel being part of a cell 
that is in MK or not) are equally likely. Then, the posterior 
probability simplifies to the likelihood term. Under the 
assumption of independent features (i.e. the RGB color 
values), the posterior probability simply becomes: 

 

€ 

p(ω j | X) = ∏
i=R ,G,B

p(xi |ω j )                     (4) 

 

The likelihood functions

€ 

p(xi∈R ,G,B |ω0) , for MK cells 
are constructed by manually sampling such pixels. The 
underlying distributions of these training pixels are 
estimated using maximum likelihood estimation [13]. The 
resulting likelihood functions for MKI cells are given in Fig. 
2. The posterior probability 

€ 

p(xi |ω0) for MKI cells is 
further normalized to [0, 1] before the thresholding step. 
 

C. 2-Step Component-wise thresholding 
Once we computed the MKI likelihood,

€ 

p(ω0 | X) , we 
applied a 2-step component-wise thresholding to obtain 
candidate MK cell regions. The first step is regular 
thresholding using 

€ 

τ1 = 0.1 over the posterior probability 
map. This is a very low threshold, allowing too many false 
positives, yet including almost all of the significant MK 
cells. In the second step, we first computed the connected 
components and calculated the mean probability for every 
region. Using the second threshold

€ 

τ 2 = 0.25 , most of the 
false positive detections are removed. 

Fig. 3 illustrates the idea behind this thresholding 
approach for a 1-dimensional case. Experimentally, we 
determined that most of the false positive detections have 
gradual decrease in the probability map around regions with 
high MK likelihood, whereas around real MK cells, we 
observe sharp, step like changes. In this scenario, it is not 
possible to detect the real MK case while avoiding the false 
positive detection, using for example hysteresis thresholding 
[10]. However, the proposed component-wise 2-step 
thresholding allows being highly sensitive in the first step 
while ensuring the specificity in the second step. Fig. 4 

shows the intermediate results on a sample ROI image. 

III. EXPERIMENTAL RESULTS 
We applied the proposed approach to ten representative 

ROI images extracted from NB whole-slide images. Four of 
these images are cropped from low (images 1-4), four from 
intermediate (images 5-8), and two from high (images 9,10) 
MK subtypes. Computerized results have been compared to 
the ground truth information provided by an expert 
pathologist. The corresponding number of true positive (TP), 
false positive (FP), ground-truth (GT) cells as well as the 
detection sensitivity (i.e., TP/GT) are reported in Table 1. It 
should be noted that MKI classification is based on MK 
count among 5000 cells and these sample ROIs do not 
exhibit same cellularity; hence their ground-truths are based 
on the whole-slides they are cropped from.  

As can be seen from Table 1, the proposed computerized 
system was able to detect, on average, 55 out of 68 cells, 
thus providing a detection rate of the 81.1%. The average 
number of false positives was 12.2 cells that correspond to 
approximately 18% of sensitivity, which is acceptable 
especially given the heterogeneity of the tissue content and 
variations among different NB subtypes. 

 
 
Fig. 2. Likelihood functions are estimated from red, green and blue 
channels using the manually marked samples.  

 
Fig. 3. Illustration of the component-wise 2-step threshold for 1-
dimensional case. τ1 provides the connected components and τ2 
thresholds the mean probability of each component. 
 

TABLE I 
MK CELL DETECTION RESULTS OVER 10 REPRESENTATIVE ROI. GT, TP, 
FP CORRESPOND TO THE NUMBER OF GROUND-TRUTH, TRUE POSITIVE, 

AND FALSE POSITIVE MK CELLS, RESPECTIVELY 

Image GT TP FP Sensitivity 

1 12 9 10 75.0% 
2 15 12 12 80.0% 
3 44 40 16 90.9% 
4 37 36 13 97.3% 
5 44 39 16 88.6% 
6 37 31 13 83.8% 
7 73 65 8 89.1% 
8 45 38 3 84.4% 
9 150 102 14 68.0% 
10 221 178 17 80.5% 
Avg. 67.8 55.0 12.2 81.1% 
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IV. CONCLUSIONS 
In this study, a computer-aided system based on the 

likelihood functions and 2-step component-based 
thresholding was developed for the automated detection of 
MK cells in digitized images of NB tissue slides. Each NB 
image is first preprocessed to reduce the variation in the 
color range due to staining differences and to smooth the 
highly heterogeneous regions. Candidate MK cell regions 
were then determined based on the likelihood functions. 
Finally, the MKI cells were detected by applying a 
component-wise 2-step thresholding step. The computerized 
results were compared to ground-truth information provided 
by an expert pathologist. The proposed approach yielded 
promising results with 81.1% of detection rate and 12.2 false 
positives on average over a testing set of ten images. In our 
future work, we are going to combine this system with the 
previously developed components to obtain a complete 
computer-assisted NB prognosis system, which will be 
useful in clinical settings. 
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Fig. 4. Intermediate results of the computerized MKI detection 
approach are shown above. (a) Original input image with ground-truth 
shown in cyan circles (b) probability map 

€ 

p(ω0 | X)  of MKI cells, 
(c) results of the first thresholding, 

€ 

p(ω0 | X) > τ1 (d) results after 
applying the component-wise second threshold 

€ 

pavg
comp (ω0 | X) > τ 2. 
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