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Abstract—Exudates are a class of lipid retinal lesions visible
through optical fundus imaging, and indicative of diabetic
retinopathy. We propose a clustering-based method to segment
exudates, using multi-space clustering, and colorspace features.
The method was evaluated on a set of 89 images from a
publicly available dataset, and achieves an accuracy of 89.7%
and positive predictive value of 87%.

I. INTRODUCTION

Diabetic retinopathy (DR) is a sight-threatening risk in-

flicting diabetic patients. Exudates are a class of lipid lesions

visible in optical retinal images, which are clinical signs

of DR. Two manifestations of exudates are known: hard

exudates, that appear as bright yellow regions, and soft

exudates or cotton-wool spots, which have fuzzy appearance.

Automatic detection of exudates is of interest as it can assist

ophthalmologists in DR diagnosis and early treatment.

The common approaches to lesion-level exudate detec-

tion follow a bottom-up strategy [1], beginning with pixel

classification, followed by region-level classification. Color

values are used in pixel classification, since exudate pixels

exhibit a limited range of color. Region-level classification

has been attempted with features like edge-strength [1], mean

intensity within the region [2], [3], and contrast features [4].

The optic disk is a structure with similar color characteristics

as exudates, imaged in the central views of the retina. Optic

disk has been distinguished by using entropy features [5], or

using dedicated methods like active contours [6].

Existing work use supervised classification like k-nearest

neighbor [4], neural networks or SVM [1]. In these methods,

color normalization is performed as a common step in order

to reduce the variability within retinal images, occuring due

to imaging conditions, pigmentation, and presence of other

pathology. Color is a prominent characteristic of exudates,

and the performance of existing approaches rely on the abil-

ity of the normalization technique to handle the variability

effectively.

Segmentation may also be performed in an unsuper-

vised manner. Low-level segmentation has been performed

by clustering using multispectral images and uniform-sized

neighborhoods [7]. To achieve segmentation using clustering,

features are computed at each pixel (or its neighborhood),

thereby yielding data points in feature space. The clustering

algorithm then assigns labels to each data point by optimizing

over a cost function [1], [2], [6]. Segments are contiguous

regions of pixels receiving the same label.
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Fig. 1. Retinal image indicating an exudate cluster, optic disk and the
fundus mask

Two factors play a role in the clustering method: the

feature space used, and the distance metric defined upon that

space. The cost function uses the distance metric to find the

proximity of cluster prototypes to each pixel, and assigns

labels based on optimal values of the cost function.

Multi-space clustering is a technique which uses multiple

feature spaces, with potentially each feature space using a

different clustering algorithm and distance metric [8]. This

technique has shown improvement in performance com-

pared to single-space clustering [8], [9]. The improvement

is achieved by coercing the outcomes of the individual

clusterings in a constrained fashion.

In this work, we propose a multi-space clustering approach

to exudate segmentation, which does not use color normaliza-

tion or preprocessing. The proposed method uses colorspace

features constituting two feature spaces. Clustering is per-

formed individually in each feature space, and the obtained

labels are combined in a special manner to yield exudate

segments.

II. PROPOSED METHOD

The proposed method is a bottom-up approach consisting

of the following steps:

1) suppressing the fundus mask

2) obtaining pixel values in multiple color spaces

3) constructing the feature spaces to perform clustering

4) clustering to obtain labels

5) combining the clustering outcomes, to get candidate

regions
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(a) Clustering in f1 (b) Clustering in f2

Fig. 2. Clustering based segmentation in two feature spaces

6) suppressing false candidates

The fundus mask is the dark peripheral part of the RGB

retinal image, which does not contain informative pixels

(fundus pixels). The fundus mask can be excluded by

thresholding the brightness (V of HSV space). The next

step computes color transformations into four color spaces,

for each of the fundus pixels. Conditionally independent

feature spaces are constructed from the colorspace values.

We have considered the following colorspaces: RGB, CIE

L*u*v*, HSV, HSI, and constructed two feature spaces:

f1 : (H, S, V, I) , and f2 : (R, G, L∗, u∗, v∗) . It can be

seen that conditional independence is ensured among the

two feature spaces. This is essential [8] for the multi-space

clustering framework.

We use k-means clustering, 1−cross-correlation being the

distance metric, treating data points as sequences. The values

forming each such sequence are normalized to have zero

mean and unit standard deviation. The clusters are initialized

by performing a preliminary clustering with random 10%

subsampling of the data, and k centroids at random. We set

k = 4, thereby partitioning the image into 4 segments.

Clustering in f1 results in segments corresponding to the

following structures in the retinal image:

1) Bright lesions and bright background

2) Vessels, dark background, macula region

3) General retinal background

4) Peripheral region,

whereas clustering in f2 results in the following segmen-

tation:

1) Optic disk, hard exudates, peripheral bright regions

2) Vessels, dark lesions, dark background

3) Regions surrounding the bright objects (enclosing re-

gions of (1) )

4) Other background pixels

Regions of f1 with label 1 (denote L1.1) miss some

minute, isolated exudates and some faint exudates, which are

however picked up in f2 label 1 (denote L2.1), at the cost

of picking several periphery pixels. The choice of feature

space has yielded this complementary nature to the clustering

relevant to the region of interest. The labels, if combined

appropriately, help to maximally identify the exudate regions

and optic disk. We subsequently show a scheme devised to

achieve this.

Clustering results in separation of the four clusters, from

which we identify the cluster corresponding to L1.1 and L2.1
using the following observations:

1) exudates are bright lesions: max(I) value (of HSI) will
be high in the exudate cluster.

2) exudates exhibit a yellowish color: max(R)−max(G)
in exudate cluster should have a low value.

3) cluster having minimum max(I) can be rejected as

being L1.2 or L2.2. Similarly cluster having maximum

max(R) − max(G) can be rejected as non-exudate

cluster.

This logic is summed up in Table I. L1.1 and L2.1 are

shown in brown in Figure 2

TABLE I

IDENTIFYINGL1.1 AND L2.1 CLUSTERS

max(I) max(R) −max(G) Possible clusters

maximum minimum L1.1, L2.1

minimum X L1.2, L2.2, L1.4
X maximum L1.2, L1.3, L2.2
X X L1.3, L2.4, L2.3

Having identified L1.1 and L2.1, their complementary

nature is now used to extract the most likely exudate regions.

For this we have devised the following scheme:

L1.1 contains slightly over-segmented exudate regions,

and several bright background pixels surrounding and includ-

ing the optic disk. L2.1 contains well-segmented exudates,

minute exudates, and several peripheral pixels. The exudate

regions can thus be extracted by finding all L2.1 regions

present in L1.1, and the other L1.1 regions not present L2.1.
Connected components analysis is done to enumerate the
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(a) L1.1 regions not present in L2.1 (b) L2.1 regions present in L1.1

Fig. 3. Candidate regions identified by coercing the clusterings

regions and find their presence in L1.1 and L2.1. The desired
regions are then extracted, as shown in Figure 3.

Parts of the optic disk and a few bright background regions

near it now remain to be identified and suppressed. It can

be seen that these superfluous regions are bounded by or cut

across by blood vessels. Yet the contrast between the vessels

and the candidate region is not prominent, leading to the

regions enclosing some vessel segments. The optic disk is

one such region, where the major vessels are incident.

We use band decorrelation [10] among the RGB bands in

the candidate regions. This results in strong accentuation of

the vessel contrast. The red component of the decorrelated

result shows a very high value at blood vessels, whereas

green component assumes high value at exudates and bright

regions (see Figure 4(a)). As per this observation, optic disk

regions and regions with vessel crossings assume higher

mean decorrelated red value. Thus we find the difference

between the mean of red value before and after decorrelation,

and suppress candidates yielding a negative value of this

difference.

III. EVALUATION

A. Dataset

Our method was evaluated against the publicly available

DIARETDB1 dataset, consisting of 89 images, of which 38

images contain hard exudates, and 20 contain soft exudates.

All images are of same size (1500x1152) and captured

using 50 degree field-of-view digital fundus camera [11].

Each ground truth annotation contains polygonal markings

of several experts, aggregated to indicate consensus. Against

this ground truth we have the possibility of evaluating the

segmentation at different consensus levels. We have used the

suggested baseline of 75% consensus, and report accuracy

of our method in terms of sensitivity and positive predictive

value [12] (PPV).

The ground truth is available in terms of polygonal re-

gions, but the polygons are not an exact annotation of the

lesion boundary. In order to obtain stricter regions, we per-

formed an automatic thresholding operation in the green band

image, restricting the processing to within each annotated

polygon (Otsu method was applied for thresholding). Pixels

in the polygon having green component above the threshold

are used as true exudate regions.

Candidate regions in the segmented image which coincide

with the true regions obtained as above, are counted as pos-

itive. PPV is found as the ratio of number of positive pixels,

to the total number of candidate pixels. Our method achieves

a sensitivity of 71.96% and PPV of 87%. For declaring

as positive, the degree of coincidence needed between the

segmentation and the ground truth is typically set to 50%.

This criterion is justifiable considering that several exudates

are small, irregular-shaped and appear in clusters, and hence

manual annotation by experts is bound to be imprecise.

Applying a region overlap accuracy metric, our approach

has an accuracy(recall) of 89.7%. This can be compared

with the supervised method of [5], which reports a recall

of 87.28% on a dataset of 40 images from a local hospital,

and [3], reporting recall of 84.4% at PPV of 62.7% on a set

of 50 images. However the performance is lower than [2],

reporting 92% recall on a set of 42 images.

IV. DISCUSSION AND CONCLUSIONS

The use of correlation as distance metric, and use of well-

selected feature spaces has compensated for the commonly

performed image pre-processing step. To perform clustering,

other work in literature have used fuzzy c-means, but have

not capitalized on the fuzzy membership values. Moreover,

time taken to process a single image is reported to be

considerably high (for example, 18 minutes [5] for 752x500

image in Matlab platform) in fuzzy c-means method.

We perform k-means clustering at pixel level using only

color information at each pixel, owing to the bottom-up

strategy. Processing using a pixel color list data structure

enabled much faster clustering (less than 20 seconds on
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(a) RGB band-decorrelated image (b) Positive regions after false candidate suppression

Fig. 4. The use of band decorrelation for suppressing optic disk and false candidates

TABLE II

AVERAGE RUNNING TIME FOR A SINGLE IMAGE: 1500X1152, IN

MATLAB PLATFORM

Stage Avg. time taken(sec)

Fundus mask suppression 0.04
Construction of color list 10.51
Color transformations 7.96

Clustering in f1 12.51
Clustering in f2 19.48

L1.1 and L2.1 identification 1.282
Coercion of labels 0.302

Suppression of false regions 11.802

Total 63.886

average. See Table II). This comfortably permits clustering

on two feature spaces.

Fig. 5. Sample result: (a) Sub-image, (b) segmented exudates

The high value of PPV indicates that false-positives are

few in our approach. Some bright imaging artifacts appearing

as small blobs, and laser marks, which appear away from the

macula in central views, are two observable false alarms. In

few images, exudates appear close to the optic disk, leading

to forming a single region enclosing both a true lesion and

the optic disk. In this case only parts of the optic disk are

suppressed by the method.

Overall, the results obtained indicate that there is good

potential for multi-space clustering to be applied as a seg-

mentation technique. Our method is significantly faster than

the state of the art, achieves comparable accuracy, and

segments are visually well-correlated with the lesion.
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