
  

  

Abstract— Blood vessel detection is an important but 

difficult task during surgeries. An unexpected location of a 

blood vessel or anatomical variations may result in an 

accidental injury to the blood vessel. This problem would 

extend the operation time or cause a serious complication. 

Moreover, differentiating the arteries from veins is 

necessary in majority of medical procedures. Hyperspectral 

imaging has entered as a new modality in medicine. This 

imaging and spectroscopic tool can be used for different 

applications including medical diagnosis. The unpredictable 

anatomy of blood vasculature during surgeries especially in 

anatomical variations makes the visibility very important. In 

this paper, a hyperspectral imaging technique is proposed as a 

visual supporting tool to detect blood vessels and to differentiate 

between the artery and vein during surgeries. This technique 

can aid the surgeon to find blood vessels and to diagnose normal 

anatomical variation and abnormalities. The hyperspectral 

images are captured using two cameras: a visible plus near 

infrared camera (400-1000nm) and an infrared camera (900-

1700nm). Using hyperspectral images, a library of spectral 

signatures for abdominal organs, arteries, and veins are 

created. The high-dimensional data are classified using support 

vector machine (SVM). This method is evaluated for the 

detection of arteries and veins in abdominal surgeries on a pig. 

I. INTRODUCTION 

NJURY to major blood vessels during medical procedures 

results in a serious and life-threatening complication and 

prolongs the operation time [1]. Differentiation of artery 

from vein and the ability to independently detect them has a 

variety of potential applications in the head, neck, lungs, 

heart, abdomen, and lower extremities. It can develop the 

differentiation and localization of anatomic structures and 

allow assessment of physiologic features, such as perfusion. 

Artery-vein discrimination may be potentially useful  in 

several diseases such as pulmonary hypertension, pulmonary 

embolism, coronary artery disease, hepatic cirrhosis, portal 

vein thrombosis, renal hypertension, lower extremity 

occlusive disease, and lower extremity deep venous 

thrombosis. Displaying both arteries and veins in the same 

image provides additional valuable information, for instance, 

this technique allows surgeons to evaluate venous conduits 
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for peripheral vascular surgery. In addition, the anatomic 

relationship between the arteries and veins in tumors may be 

useful in the study and management of cancer [1], [2] [3].  

A variety of methods have been developed for the 

evaluation of the vascular system, such as laser Doppler 

Flowmetry (LDF), color Doppler ultrasonography, speckle 

methods, optical coherence Doppler tomography (OCDT), 

functional imaging and monitoring of blood oxygenation, X-

ray angiography, computed tomography angiography (CTA), 

and magnetic resonance angiography (MRA) [4].  

Hyperspectral imaging may provide reliable data in near 

real-time with a convenient device for the surgeon in the 

operating room. This technique does not need injections, 

radiation, or other invasive preparations before imaging. In 

addition, the spectral measurement in the field of surgery can 

be done without physical contact, many points can be 

measured simultaneously, and it can be performed with 

minimal disturbance [5], [6]. 

Hyperspectral imaging has already been used in the 

medical field. Hyperspectral imaging was applied to 

calculate the tissue oxygen saturation [7]. This technique has 

been used to monitor relative spatial changes in retinal 

oxygen saturation [8]. 

In this paper, using two hyperspectral cameras (400-

1000nm and 900-1700nm), a data base of spectral signatures 

for arteries, veins, and abdominal organs has been created. 

Using these signatures, the abdominal view through a large 

incision is segmented. This technique is useful for detecting 

blood vessels and for discriminating the arteries from veins, 

particularly those that were not predicted. The surgical 

hyperspectral data are captured during a surgery on a pig. 

The support vector machine (SVM) is used for classification.  

II. MATERIALS AND METHODS  

To capture the hyperspectral image data, two cameras 

ImSpector N17E and V10E manufactured by Spectral 

Imaging Ltd., Oulu, Finland, were used. The V10E model 

has the spectral range of 400 - 1000 nm, dispersion of 97.5 

nm/mm, and spectral resolution of 5 nm (with a 30 µm slit). 

The N17E model has a spectral range of 900 - 1700 nm, a 

dispersion of 110nm/mm, and a spectral resolution of 5 nm 

(with a 30 µm slit). Each pixel in the hyperspectral image has 

a sequence of reflectance in different spectral wavelengths 

that can display the spectral signature of that pixel. Fig. 1 

shows a schematic view of the hyperspectral image. Since 

there is a large amount of data for each image, Support 
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Vector Machine (SVM) is used to segment the image. The 

technique is evaluated during the abdominal surgeries on a 

pig under general anesthesia. 

A. Hyperspectral image capturing  

Two halogen lamps, as the light source, illuminate the 

tissue to be captured, and the radiation from the tissue is 

collected by the camera objective lens. It displays an image 

on the entrance slit plane. The slit determines the field of 

imaging in spatial directions. The radiation from the slit is 

projected to the prism-grating-prism (PGP) components, 

therefore the direction of propagation of the radiation 

changes on its wavelength. Then it is focused on the CCD 

matrix detector. Every object’s point is represented on the 

matrix detector by a series of monochromatic points that 

makes a continuous spectrum in the direction of the spectral 

axis.  

The pushbroom scanner type of imaging spectrometer is 

the capturing technique of the camera. In this technique the 

entrance slit limits the imaging field. All parts of the object 

and all corresponding wavelengths are ultimately captured 

by shifting the camera between subsequent images. 

Therefore, for each wavelength, a spectral intensity image 

can be constructed from the hyperspectral image set. 

By moving the camera’s field of view relative to the 

operation field, the second spatial dimension is created. The 

linear actuator, a ROBO Cylinder Slider, model RCS-SM-A-

100-H-1000-T1-S, is used to move the camera. This actuator 

is controlled by an XSEL-J-1-100A-N3-EEE-2-1 type 

controller (manufactured by IAI Corporation, Japan). The 

actuator is connected to the controller by two cables: the 

encoder cable and the motor cable. The movement and 

velocity are adjusted by a setting tool that is connected to the 

controller. The actuator moves the camera with a constant 

velocity (10 mm/s). The experimental data acquisition setup 

consists of a pair of 500W halogen lamps with diffusing 

reflectors as the light sources and the computer-controlled 

linear actuator that is fixed on a bridge installed over the 

surgical bed. Fig. 2 shows the acquisition setup. The two 

light sources provide a fairly uniform illumination of the 

subject. The camera has been calibrated and fixed on the 

frame. The distance between the lens and the abdomen is 

constant. The image cubes are captured in Band-Interleaved-

by-Pixel (bip) and Band-Interleaved-by-Line (bil) formats 

that are converted to the band sequential format.  

B. Data normalization  

The radiance data are normalized to yield the reflectance 

of the tissue. The normalization manages the problem of 

spectral non-uniformity of the illumination device and 

influence of the dark current. The radiance of a standard 

reference white board placed in the scene is captured as the 

white reference, and the dark current is measured by keeping 

the camera shutter closed. Then the raw data is corrected to 

the reflectance using the following equation:  
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where )(R λ  is the calculated reflectance value, for each 

wavelength; )(Iraw λ  is the raw data radiance value of a 

given pixel; and )(Idark λ  and )(Iwhite λ are, respectively, 

the dark current and the white board radiance acquired for 

each line and spectral band of the sensor. 

C. Least squares SVM (LS-SVM) 

Support vector machines (SVMs) [9] have been 

successfully used for hyperspectral data classification in 

recent years. SVMs can powerfully handle large input data 

 
Fig. 2.  The acquisition setup. 

 

Fig. 1. Upper panel: a schematic view of a hyperspectral image of 

pig’s abdomen is shown. Lower panel: the spectral graph of the 

average spectrum from the pig’s skin is shown. The graph depicts the 

reflectance for each wavelength in that region.  
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or noisy samples [10]. Therefore, an SVM was chosen to 

classify the hyperspectral data and to segment the images. 

A convex quadratic program (QP) solves the classification 

problem in the SVMs. The new version of SVM classifiers, 

the Least Squares SVMs (LS-SVMs), is applied in the 

current study [11]. A two-norm with equality is applied 

instead of inequality constraints in LS-SVMs. The SVM tries 

to find a large margin for classification. However, the LS-

SVM that was used in this paper looks for a ridge regression 

for classification with binary targets. This method overcomes 

some disadvantages of conventional SVMs. For example, the 

selection of hyperparameters is not as problematic. The size 

of the matrix involved in the QP problem is also directly 

proportional to the number of training points [12]. 

The accuracy of the SVM is greatly dependent on the 

selection of the kernel parameters. The grid search method, a 

commonly used parameter selection method for the SVM, 

was employed in this study. This algorithm tries to find the 

largest error-decreasing path during training [13]. Multi-

class categorization problems are represented by a set of 

binary classifiers. We had input vectors of 157 elements in 

the ImSpector N17E images and 121 elements in the 

ImSpector V10E images, and each input vector was assigned 

to one of three classes (artery, vein, and other tissues). To 

prepare a set of input/target pairs for the training, first we 

captured 100 pixels of data from each region in the surgical 

hyperspectral images. The SVMs were applied one by one to 

the image for each class, and each pixel was labeled as a 

tissue type. The training data are different from the 

evaluation data. The training data are captured and labeled 

using anatomical data by a medical doctor. The times for 

algorithm training are 3-4 minutes and 2-3 minutes for the 

images captured by the N17E and the V10E cameras, 

respectively. The calculation time for the segmentation was 

3-4 minutes and 2-3 minutes for the images captured by the 

N17E and the V10E cameras, respectively. 

III. EXPERIMENTAL RESULTS 

The experiment was done on a pig. Under general 

anesthesia, a large incision was created on the pig’s 

abdomen, and the internal organs were explored. As a major 

artery and vein, abdominal aorta and inferior vena cava were 

exposed for evaluation. Vital signs were controlled during 

the surgery to guarantee constant oxygen delivery to the 

organs. Five hyperspectral images by the ImSpector N17E 

and five hyperspectral images by the ImSpector V10E were 

captured.  

The actuator velocity was adjusted such that the 

resolutions of the two spatial dimensions were equal. Each 

pixel of the hyperspectral images had a series of intensities at 

Fig. 3. Spectral intensity signatures: the abscissa shows different 

wavelengths, and the ordinate shows the radiance in arbitrary unit. 

Arteries are shown in red lines, veins in blue lines, large intestine in 

green lines and liver in magenta. 

 
Fig. 4. Reflectance spectra: the abscissa shows different wavelengths, 

and the ordinate shows the reflectance. Arteries are shown in red 

lines, veins in blue lines, large intestine in green lines and liver in 

magenta. 
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different wavelengths. The diagrams of the intensity for the 

arteries, veins, liver, large intestine, and other organs and 

tissues were extracted. Fig. 3 shows the spectral signatures of 

these tissues. The white reference and dark current were 

captured separately for each hyperspectral image. To 

transform the intensity diagram to a unique spectral signature 

that would be reproducible and comparable, the reflectance 

spectra (after white calibration) were calculated. Fig. 4 

shows the reflectance spectra.  

The performance of the method was evaluated for the 

detection of the aorta and the inferior vena cava. Fig. 5 

shows a sample segmented image. The performance was 

evaluated for the quality of detection with respect to the 

hand-created maps by a medical doctor and by using 

anatomical data. Performance criteria for detection were the 

false negative rate (FNR) and the false positive rate (FPR), 

which were calculated for each blood vessel. When a pixel 

was not detected as a blood vessel pixel, the detection was 

considered as a false negative if the pixel belonged to a 

blood vessel on the hand-created map. The FNR for a blood 

vessel was defined as the number of false negative pixels 

divided by the total number of the blood vessel pixels on the 

hand-created map. When a pixel was detected as a blood 

vessel pixel, the detection was a false positive if the pixel 

was not a blood vessel pixel on the hand-created map. The 

FPR was defined as the number of false positive pixels 

divided by the total number of non-vessel pixels on the hand-

created map. The numerical results of the FPR and FNR for 

artery and vein are given in Table I. 

IV. DISCUSSION 

The spectral reflectance for each organ or tissue change is 

based on its characteristics. The spectral properties of the 

aorta are evaluated by a few previous researches. The aorta 

is a large artery distributing blood from the heart to the body. 

Due to its large size, it provides appropriate sample sizes for 

convenient experimental measurements. The spectral 

signature of the artery is similar to the previous studies [14]. 

The maximum spectral difference between the arteries and 

veins are at 650-700nm wavelengths that can be due to 

hemoglobin and oxy-hemoglobin (oxygenated). It has been 

shown that spectroscopic properties of hemoglobin change 

with oxygenation [14].   

Hyperspectral imaging offers a valuable non-invasive tool 

for surgeons to assess a large area. The extension of the 

surgeon’s vision would be a significant breakthrough. An 

advantage of this technique is the capability to both spatially 

and spectrally verify the variations among different tissues or 

organs during surgery. The support vector machine algorithm 

can integrate detailed classification procedures that could be 

used for the region extraction and identification of organs or 

tissues. 
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Fig. 5.  An RGB image is made using three channels of the 

hyperspectral image. The detected artery and inferior vena cava by 

the proposed method is shown in red and blue, respectively. 

TABLE I 

EVALUATION RESULTS 

Artery Vein 
 

V10E N17E V10E N17E 

FPR 7.3% 6.4% 5.4% 4.3% 

FNR 3.1% 4.7% 7.6% 9.7% 

FPR = false positive rate, FNR = false negative rate. 
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