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Abstract— With the introduction of sensitive and fast elec-
tronic imaging devices and the development of biological
methods to tag proteins of interest by green fluorescent pro-
teins (GFP), it has now become critical to develop automatic
quantitative data analysis tools to study the live cell dynamics at
subcellular level. In this paper, a sequential Monte Carlo (SMC)
method to track variable number of multiple 3D subcellular
structures is proposed. First, multiple subcellular structures
are represented by a joint state. Then the distribution of the
dimension changing joint state is sampled efficiently by the
reverse jump Markov chain Monte Carlo (RJMCMC) method
designed with update move, identity switch move, disappearing
move, and appearing move. The experimental results show
that the proposed method can successfully track multiple 3D
subcellular structures with different motion modalities such as
object appearing and disappearing.

I. INTRODUCTION

With the wide application of bio-markers in biomedical
experiments, it has now become critical to develop automatic
quantitative data analysis tools for the studying of live cell
dynamics at subcellular level. However, there lacks a general
computational methodology on how to represent, track, and
model the motility of subcellular structures to meet the
essential research needs arising from the biology research
community.

The technical challenges for subcellular structure mobility
analysis come from: (1) variable object size; (2) changing
number of objects; (3) large shape deformation; (4) close-
neighbored objects; (5) diverse motion modalities; and (6)
high noise. The commonly developed object tracking tech-
niques can not be directly applied here. For instance, conven-
tional template-based feature matching methods are limited
for tacking non-deformable and sparsely-neighbored objects,
and the curve/surface evolution based tracking methods are
susceptible to noise and inter-frame object displacement [1].
Multiple-hypothesis tracking (MHT) [2] based methods need
to handle exponential computation complexity, and joint
probabilistic data association (JPDA) [3] methods face the
problem of combinatorial complexity. Furthermore, there
are several applications of RJMCMC [4] method to track
variable number of multiple objects [5], [6]. However, the
assumption that object will appear/disappear in certain fixed
regions of the image scene is not applicable to generic
subcellular image sequences.
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To overcome the deficiencies of the current methods for
multiple interacting object tracking, we present a tracking
framework based on SMC method and approximate the joint
state distribution at different time using RJMCMC sampling
method. The background state is included into the joint state
instead of using Markov random field (MRF) [6] to prevent
the tracked objects being attracted to the high likelihood
location. Furthermore, the restriction on the location of object
appearing or disappearing is removed by the marker residual
volume based appearing model. Experiment results on real
confocal videos show that our method can track multiple 3D
subcellular structures successfully.

The rest of this paper is organized as follows. The de-
tection and representation of 3D subcellular structure are
described in Section II. In Section III, we represent the
variable number of multiple 3D subcellular structures by a
joint state. The RJMCMC sampling method is detailed in
Section IV, with the introduction of the 3D marker residual
volume guided object appearing model in Section V and the
observation mode in Section VI. Finally, the summary of
the whole algorithm, experimental results, and conclusions
are presented in Section VII, Section VIII, and Section IX,
respectively.

II. AUTOMATIC 3D SUBCELLULAR STRUCTURE
DETECTION AND REPRESENTATION

The regional maxima of a 3D gray-scale reconstructive
opening operation �3 on the image volume I3t are used
to detect the subcellular structures. The operation is as:
I3t �C3 S3 = I3t �C3 (I3t ◦3 S3), where S3 is the 3D
structuring element, �3 is the 3D gray scale reconstruction
operation, ◦3 is the 3D gray scale morphological opening,
and C3 is the 3D connectivity definition for �3. Each of the
regional maxima of I3.t �C3 S3 is dilated once to include
more voxel information. The corresponding binary volume
is called marker volume M3.t. The examples of regional
maxima and marker volume are shown in Fig. 1(b) and
Fig. 1(c).

(a) (b) (c) (d)
Fig. 1. From regional maxima to state. (a) is the original volume. (b) is
the regional maxima volume. (c) is the marker volume. (d) is OBV. The
ratio between x, y, and z directions is x:y:z=5:5:1

For the oriented bounding volume (OBV) of each con-
nected component (Fig. 1(d)), the length l, width w, height
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h, and the corresponding rotation angles γ, β, and α [7]
are used to represent each detected object as Xi = (x, y,
z, l, w, h, γ, β, α)T , where, (x, y, z) is the geometric center
of the OBV.

III. MODELING VARIABLE NUMBER OF 3D
SUBCELLULAR STRUCTURES

We represent multiple 3D subcellular structures by a joint
state X, and denote it at time t as: Xt = {Xt.i|i ∈ nt},
where nt, with its cardinality |nt| ≥ 1, is the set of
object identity number indicating which objects contribute to
represent the joint state. The state of the object with ID i at
time t is represented as Xt.i = (xt.i, yt.i, zt.i, lt.i, wt.i, ht.i,
γt.i, βt.i, αt.i)T . The background with unchanging state is
also treated as an object in our joint state model and
represented as Xt.0 = (x0, y0, z0, l0, w0, h0, γ0, β0, α0)T .
It is the geometric information of the whole volume.

Given the state parameter vector Xt and object iden-
tity indicator set nt, the joint distribution is denoted as
p(nt, Xnt

). We factorize the state transition density func-
tion p(nt, Xnt

|nt−1, Xnt−1) as p(nt, Xnt
|nt−1, Xnt−1) =

p(Xnt |nt, nt−1, Xnt−1) × p(nt|nt−1, Xnt−1). Although the
collision between 3D subcellular structures can happen in
real, we treat such effects as the noise in the system equation
and assume the independence between the individual states
of each object. Thus p(Xnt

|nt, nt−1, Xnt−1) can be further
factorized as:

p(Xnt
|nt,nt−1,Xnt−1)�

∏
i∈St

p(Xnt.i|X(nt−1).i)
∏

j∈Bt

p(Xnt.j), (1)

where St = nt ∩nt−1 is the set of objects at time t− 1 that
remain at time t, Bt = nt\nt−1 is the set of new objects that
are not in set nt−1. Probability distribution p(Xnt.j) will be
discussed in Section IV.

IV. RJMCMC METHOD FOR SAMPLE GENERATION

The acceptance ratio of RJMCMC method is calculated
as :

α(nt,Xnt ;n
′
t,X

′
nt

) =
p(Zt|n′

t,X
′
nt

)p(n′
t,X

′
nt
|Z1:t−1)pm′×

p(Zt|nt, Xnt
)p(nt, Xnt

|Z1:t−1)pm×
qm′(U; n′

t,X
′
nt

)
qm(U′; nt,Xnt

)

∣∣∣∣∂(X′
nt

,U′)
∂(Xnt

,U)

∣∣∣∣ , (2)

where U and U′ are the auxiliary random variable vectors to
guaranty that the mapping from (Xnt , U) to (X′

nt
, U′) is a

one-to-one mapping. pm is the move specified probability
and qm is the proposal function for U, where m, m ∈
{u, s, d, a}, with u, s, d, and a corresponding to update move,
identity swap move, disappear move, and appear move,
respectively. The last term of Eq. (2) is the Jacobian of
the one-to-one mapping from (Xnt , U) to (X′

nt
, U′). In this

paper, we design the RJMCMC moves in a way such that
the Jacobian term is always equal to one.

The four moves designed for the 3D object tracking are
update move, identity swap move, disappear move, and
appear move.

1) Update Move: An object identity number i is uni-
formly selected from the current identification number set nt,
and random walk is applied to it. The update move proposal
is:

qu(n′
t, X′

nt
;nt, Xnt) = qu(i)qu(n′

t, X′
nt

; nt, Xnt , i), (3)
where qu(i) = 1/|nt| is the proposal distribution for select-
ing i, i ∈ {nt \ 0}, qu(n′

t, X′
nt

; nt, Xnt
, i) = qu(U), where

qu(U) is a Gaussian distribution.
2) Identity Swap Move: Two objects i and j in the current

object set nt are uniformly selected and their identities are
exchanged. The identity swap move proposal is:
qs(n′

t, X′
nt

; nt, Xnt
) = qs(i, j)qs(n′

t, X′
nt

;nt, Xnt
, i, j), (4)

where qs(i, j) = 1/(|nt|
2 ) is the proposal distribution for

selecting the pair (i, j), and qs(n′
t, X′

nt
; nt, Xnt

, i, j) = 1.
3) Disappear Move: An object with identity number i is

uniformly selected from the current identification number set
nt and its individual state is deleted from the joint state. The
disappear move proposal is:

qd(n′
t, X′

nt
;nt, Xnt

) = qd(i)qd(n′
t, X′

nt
;nt, Xnt

, i), (5)
where qd(i) = 1/|nt| is the proposal distribution for select-
ing i, i ∈ {nt \ 0}, with | · | as the set cardinality operator,
and qd(n′

t, X′
nt

; nt, Xnt , i) = 1.
4) Appear Move: An object with identity number i is uni-

formly selected from set {At∪n̄t\nt}, with n̄t = ∪N
k=1n

(k)
t−1,

where N is the number of samples at time t − 1 and At is
the possible new object set at time t. At is constructed by
image processing techniques and will be discussed in Section
V. The individual state of the identification number i is added
to the joint state. The appear move proposal is:

qa(n′
t, X′

nt
; nt, Xnt) = qa(i)qa(n′

t, X′
nt

;nt, Xnt , i), (6)
with qa(i) = 1/|At ∪ n̄t \ nt| as the proposal distribution
for selecting i, i ∈ {At ∪ n̄t \ nt}, qa(n′

t, X′
nt

; nt, Xnt
, i) =

qa(U), where qa(U) is the proposal of generating the state
for the newly added object. The formulation of qa(U) will
be presented in Section V.

Plugging the proposal of each move into Eq. 2, we get
acceptance ratios as follows:

αu = αs =
p(Zt|n′

t, X′
nt

)p(n′
t, X′

nt
|Z1:t−1)

p(Zt|nt, Xnt
)p(nt, Xnt

|Z1:t−1)
, (7)

αd =
p(Zt|n′

t, X′
nt

)p(n′
t, X′

nt
|Z1:t−1)paqa(i)qa(U′)

p(Zt|nt, Xnt)p(nt, Xnt |Z1:t−1)pdqd(i)
, (8)

αa =
p(Zt|n′

t, X′
nt

)p(n′
t, X′

nt
|Z1:t−1)pdqd(i)

p(Zt|nt, Xnt
)p(nt, Xnt

|Z1:t−1)paqa(i)qa(U)
. (9)

For the evaluation of p(nt, Xnt
|Z1:t−1), we use its

mixture approximation as: p̂(nt, Xnt |Z1:t−1) = 1
N

∑N
k=1

p(nt, Xnt
|n(k)

t−1, X(k)
nt−1

), where p(nt, Xnt |n(k)
t−1, X(k)

nt−1
) is

evaluated as p(nt, Xnt |n(k)
t−1, X(k)

nt−1
) = p(nt|n(k)

t−1, X(k)
nt−1

)∏
j∈Bt

p(Xnt.j) ×∏
i∈St

p(Xnt.i|X(k)
(nt−1).i

), with Bt = nt \
n

(k)
t−1, St = nt∩n

(k)
t−1 as previously introduced in section III.

There are two cases for object identification number j in Bt,
j ∈ At and j �∈ At. For the first case, p(Xnt.j) = pnew,
with j ∈ At. For the second case, p(Xnt.j) is defined
to be p(Xnt.j) �

∑
i∈N

(j)
t−1

p(Xnt.j |X(i)
nt−1.j)/|N (j)

t−1|, with
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N
(j)
t−1 = {i : j ∈ n

(i)
t−1}, the set of samples at time t − 1

containing object j. n
(i)
t−1 is the object set for particle i at

time t− 1. p(nt|n(k)
t−1, X(k)

nt−1
) is defined to be equivalent for

all nt, n
(k)
t−1, and X(k)

nt−1
, since we assume the equal chance

of each object set nt.

V. 3D MARKER RESIDUAL VOLUME-GUIDED
APPEARING MODEL

We apply the marker residual volume-guided appearing
model to detect new object appearing. For a 3D volume I3.t

at time t, its marker volume M3.t can be denoted as M3.t =
∪n

i=1M3.t.i, where M3.t.i is the volume of the ith connected
component. A new volume called marker residual volume
M3.t that predicts possible newly appearing objects is defined
as: M3.t = {M3.t.i :M3.t.i∩M3.(t−1) =∅, i = 1, · · · , n}. An
example of the marker volume and marker residual volume
is illustrated in Fig. 2.

(a) (b) (c)
Fig. 2. Marker residual volume generation. (a) is marker volume M3.8.
(b) is marker volume M3.9. (c) is marker residual volume M3.9. The ratio
between x, y, and z directions is x:y:z=5:5:1

We treat each M3.t.i, as a possible new object and use
it to construct the possible appearing object set At. The
aforementioned proposal function qa(U) for the new object
is defined as follows:

qa(U)=

{
p(Xnt.j |M3.t.j), ifj∈At∑

i∈N
(j)
t−1

P (Xnt.j |X(i)
(nt−1).j

)/|N (j)
t−1|, ifj �∈At,

(10)

where p(Xnt.j |M3.t.j) generates the state by a Gaussian
distribution center around the object in the image M3.t.j .
N

(j)
t−1 = {i : j ∈ n

(i)
t−1} is the set of samples at time t − 1

containing object j.

VI. 3D OBSERVATION MODEL
The joint observation model is defined as: p(Zt|Xt) =∏
i∈nt

p(Zt.i|Xt.i). For the measurement of each individual
object state Xt.i, we use the intensity profile of the voxels
inside its bounding volume to match with its reference Rt.i,
which is obtained at the beginning of each object trajec-
tory. Three properties are considered in our observation: (1)
volume; (2) intensity mean; and (3) sorted sum-of-absolute-
differences (SSAD). We define the observation model for
each individual object as:

p(Zt.i|Xt.i) = p(Zv
t.i|Xt.i)p(Zm

t.i|Xt.i)p(Zd
t.i|Xt.i), (11)

with p(Zv
t.i|Xt.i), p(Zm

t.i|Xt.i), and p(Zd
t.i|Xt.i), for volume

measurement, intensity mean, and SSAD, respectively, and

p(Zv
t.i|Xt.i) ∝ exp

(
−λv

(
1 − min(n,m)

max(n,m)

)2
)

, (12)

p(Zm
t.i|Xt.i)∝exp

(
−λm

(
1 − min(IAn , IBm)

max(IAn
, IBm

)

)2
)

, (13)

p(Zd
t.i|Xt.i) ∝ exp

(−λd · (SSAD(An, Bm))2
)
, (14)

with λv , λm, and λd are hyperparameters. Readers please
refer to [8] for more details.

VII. SUMMARY OF THE ALGORITHM

The algorithm for 3D subcellular structure tracking is
summarized as follows:

1) Automatically detect the subcellular structures using
marker residual volume. Estimate the state X0.i of each
individual subcellular structure, and combine them
into X0. Sample the joint state X0 with N samples.
Thus the initial distribution of X0 is approximated by
p(X0) ≈ {X(s)

0 }, s = 1, . . . , N . Set t = 0.
2) Set t = t+1. Draw a sample of Xt from the prediction

density
∑N

s=1 p(Xt|X(s)
t−1)/N .

3) Apply RJMCMC method to draw N samples.
a) Draw a sample w from the uniform distribution

on (0, 1).
b) if 0 ≤ w < pu, apply update move.
c) If pu ≤ w < pu + ps, apply identity swap move.
d) If pu+ps≤w<pu+ps+pd, apply disappear move.
e) If pu +ps +pd≤w, apply appear move.
f) Calculate the acceptance ratio α(Xt, X′

t)
g) Draw a sample w′ from the uniform distribution

on (0, 1). If w′ < α(Xt, X′
t), use X′

t as the new
joint state; else use Xt. Add the new state to the
final sample set.

4) Go to step 2.

VIII. EXPERIMENTAL RESULTS

The real 3D volume sequence data in our experiment has
a total of 147 3D volumes, each with a size of 160×140×22
voxels taken at an interval of 0.88 seconds. We use a portion
of the 3D volume spanning 7.04 seconds to demonstrate our
algorithm. Here the unit ratio of x, y, and z directions is
set to be 5:5:1 for better 3D rendering effect instead of the
original unit ratio 10:10:1.

One of the tracking results of our method is shown in
Fig. 3. Among the tracked objects, object O1 is doing
translational motion, and the others are doing Brownian mo-
tion. The movement of each subcellular structure is clearly
demonstrated by its trajectory in Fig. 4 with different view
angles.

For the quantitative evaluation of our algorithm, the av-
erage displacement error between the center of the tracked
subcellular structure and that of the ground truth is shown in
Fig. 5(a), with an average distance error of 0.9361 pixels of
the x−y plane. Figure 5(b) shows the change of the number of
objects during tracking process. “Truth” means the number of
objects of the ground truth. “Correct” means that an object of
the ground truth is correctly tracked. “Missing” object means
that an object of the ground truth is not tracked. “Incorrect”
means that a tracked object is not in the ground truth or not
associated correctly. Our method successfully detected the
changes of the number of the objects which were caused by
object appearing and disappearing.
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Fig. 3. Tracking results of subcellular structures embedded in the real
volume sequence, with different subcellular structure indicated by different
color. (a) to (i) are volumes at time 0 sec, 0.88 sec, 1.76 sec, 2.64 sec, 3.52
sec, 4.40 sec, 5.28 sec, 6.16 sec, and 7.04 sec. The ratio between x, y, and
z direction is x:y:z=5:5:1
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Fig. 4. Different views of the tracking trajectories. (a) is viewed with
azimuth = 34◦, elevation = 32◦. (b) is viewed from y axis direction.
(c) is viewed from z axis direction. (d) is viewed from x axis direction. The
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Fig. 5. (a) is the average distance error at each time by our method. (b) is
the evaluation of the number of tracked object at each time by our method.

As for the parameters used in our method, the state
transition density of (x, y, z, l, w, h, γ, β, α)T was set to be a
Gaussian distribution with zero mean vector and covariance
matrix Σs, which is a 9×9 diagonal matrix with Σs11=4,
Σs22 =4, Σs33 =0.01, Σs44 =0.5, Σs55 =0.5, Σs66 =0.05,
Σs77=0.16, Σs88=0.16, and Σs99=2.5. The random walk
covariance matrix Σr is also a 9×9 diagonal matrix with
Σr11=1, Σr22=1, Σr33=0.0009, Σr44=0.01, Σr55=0.01,
Σr66=0.0025, Σr77=0.01, Σr88=0.01, and Σr99=0.09. pu,
ps, pd, and pa are set to be 0.7, 0.1, 0.1, and 0.1, respectively,
and the hyperparamers λv , λm, and λd, are set to be 7, 5,
0.4, respectively.

IX. CONCLUSIONS
In this paper, we presented a sequential Monte Carlo

(SMC) framework for variable number of 3D multiple sub-
cellular structure tracking. RJMCMC moves such as update
move, identity switch move, disappearing move, and appear-
ing move are applied to sample the dimension changing
joint state of the multiple subcellular structures efficiently.
Both the visual and quantitative experiment results show
that our method can track different motion modalities such
as Brownian and translational motions, and detect object
appearing and disappearing correctly.
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