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Abstract— It has been shown that oscillations can be gener-
ated by additive Gaussian white noise in a recurrent Hodgkin-
Huxley neuron model. Type 1 oscillation was induced with
Stochastic Resonance (SR) by additive Gaussian noise at lower
amplitudes, while Type 2 oscillation was observed at higher
amplitudes. However, the mechanism of Type 2 oscillation is not
clear. In this article, we test the hypothesis through computer
simulations that the period of the Type 2 oscillation can be
affected by temperature in a recurrent neural network in which
the recurrent model is constructed by four Hodgkin-Huxley
(HH) neuron models. Each HH neuron model is driven by
Gaussian noise and sub-threshold excitatory synaptic currents
with an alpha function from another HH neuron model,
and the action potentials (spike firings) of each HH neuron
model are transferred to the other HH neuron model via sub-
threshold synaptic currents. From spike firing times recorded,
the inter spike interval (ISI) histogram was generated, and the
periodicity of spike firings was detected from the ISI histogram
at each HH neuron model. The results show that the probability
of spike firings in the Type1 oscillation is maximized at a
specific standard deviation (S.D.) of the Gaussian white noise
with SR at 6.3, 15.0 and 25.0 oC, while the period of the Type
2 oscillation depends on temperature. It is concluded that the
Type1 oscillation can be induced by additive Gaussian white
noise on the basis of a synaptic delay in the recurrent HH
neuron model, whereas ISIs of the Type 2 oscillation may be
determined by refractory periods of HH neuron models.

Index Terms— Sub-threshold Synaptic Transmission, Action
Potential, Stochastic Resonance, Hodgkin-Huxley model, Inter-
Spike Intervals, Computer Simulation, Temperature, Q10

I. INTRODUCTION

Stochastic resonance (SR) is a phenomenon occurring

when coupling deterministic and random dynamics in non-

linear systems. This phenomenon can be interpreted as an

increase in detecting a low-level input signal in the output of

the system, which is caused by an increase in the noise level

of the input signal. In neurosciences, SR has been observed

in peripheral nervous system [1], [3], [4] and central nervous

system [5],[6], [7]. It was reported that the detection of a sub-

threshold input signal was improved when a certain level of

noise was added.

Neural oscillations have been observed in the central

nervous systems such as cerebral cortex [2] and spinal

cords. Our recent studies have shown that two types of

oscillations can be induced by additive Gaussian white

noise in a recurrent Hodgkin-Huxley neuron model. The

M. Sekine is with Graduate School of Engineering, Kanto Gakuin
University, 1-50-1 Mutsuura E., Kanazawa-ku, Yokohama 236-8501, Japan,
H. Mino is with Department of Electrical and Computer Engineering,
Kanto Gakuin University, 1-50-1 Mutsuura E., Kanazawa-ku, Yokohama
236-8501, Japan, mino@ieee.org, D. M. Durand is with Neural
Engineering Center, Department of Biomedical Engineering, Case Western
Reserve University, 10900 Euclid Ave., Cleveland, OH 44106-7207, U.S.A.,
dxd6@case.edu

HH0

HH1

Noise0

Noise1

Sub-threshold

Synaptic Stimulus

HH3

HH2

Noise3

Noise2

Sub-threshold

Synaptic Stimulus

Sub-threshold

Synaptic Stimulus

Sub-threshold

Synaptic Stimulus

Fig. 1. Recurrent neural network model with four Hodgkin-Huxley
(HH) neuron models. Each of HH neuron models is driven by the
sub-threshold excitatory synaptic currents and Gaussian white noise.

first type of oscillations (Type 1 oscillation) (about 20 Hz)

was induced with SR by additive Gaussian noise at lower

amplitudes, while the second type of oscillations (Type 2

oscillation) (about 100 Hz) was generated by some intrinsic

characteristics of neurons with noise at higher amplitudes.

Although the mechanism of Type 1 oscillation could be

attributed to SR, the mechanism of the generation of Type 2

is unknown. In order to study the origin of this oscillation,

the effect of temperature on the noise induced oscillations

was investigated.

In the recurrent neuron model, Gaussian white noise is

added to each of the Hodgkin-Huxley (HH) neuron model

and sub-threshold excitatory inputs are applied as synaptic

currents with an alpha function. The action potentials (spike

firings) of each HH neuron model are coupled to the other

HH neuron model via sub-threshold synaptic currents. Using

computer simulations at 6.3, 15.0, and 25.0 oC, the inter

spike interval (ISI) histogram was generated, and the peri-

odicity of spike firings was detected from the ISI histogram

at each HH neuron model. Furthermore, the probability of

spike firings in the oscillation period was estimated on the

basis of the ISI histogram as the standard deviation (S.D.)

of the Gaussian white noise varied.

II. METHODS

The k-th transmembrane potential, V
[k]
m , of the recurrent

neuron model described by four Hodgkin-Huxley (HH) neu-

ron models was represented for k = 0, ..., 3 (See Figure 1)
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Fig. 2. The transmembrane potentials mV as a function of time
(0-250 ms) for four HH neuron models at an S.D. of 40.0 at a
temperature of 15 oC. Type1 oscillation was generated at about 44
ms by this noise level.

Fig. 3. The transmembrane potentials mV as a function of time
(0-250 ms) for four HH neuron models at an S.D. of 60.0 at a
temperature of 15 oC. Inter-spike intervals at about 30 and 15 ms
were generated by the intermediate noise level (Type1 and Type2
oscillations).

as follows [8], [9], [10]:

C
dV

[k]
m (t)

dt
+ gNa(m[k](t))3h[k](t)(V [k]

m (t) − ENa)

+gK(n[k](t))4(V [k]
m (t) − EK) = Isyn[k](t) + I

[k]
GWN (t) (1)

where gNa=120 mS, ENa=50 mV , gK=36 mS, EK=-77

mV and the resting potential was set at -65 mV , and where

dm[k](t)

dt
= α[k]

m (V [k]
m )(1−m[k](t))−β[k]

m (V [k]
m )m[k](t) (2)

α[k]
m =

0.1(V
[k]
m + 40)

1 − e−(V
[k]

m +40)/10
Cr (3)

β[k]
m = 4e−(V [k]

m
+65)/18Cr (4)

Fig. 4. The transmembrane potentials mV as a function of time
(0-250 ms) for four HH neuron models at an S.D. of 100.0 at a
temperature of 15 oC. The noise at an S.D. of 100.0 induced the
Type 2 oscillation at about 8 ms spike intervals.

in which Cr = 3.0(T−6.3)/10, where T denotes temperature,

and

dh[k](t)

dt
= α

[k]
h (V [k]

m )(1 − h[k](t)) − β
[k]
h (V [k]

m )h[k](t) (5)

α
[k]
h = 0.07e−(V [k]

m
+65)/20Cr (6)

β
[k]
h =

1

1 + e−(V
[k]

m +35)/10
Cr (7)

dn[k](t)

dt
= α[k]

n (V [k]
m )(1 − n[k](t)) − β[k]

n (V [k]
m )n[k](t) (8)

α[k]
n =

0.01(V
[k]
m + 55)

1 − e−(V
[k]

m +55)/10
Cr (9)

β[k]
n = 0.125e−(V [k]

m
+65)/80Cr (10)

in which the excitatory synaptic current, I
[k]
syn(t), is expressed

as an alpha function by:

Isyn[k](t) = gsynCcαs(t − τd)e
−αs(t−τd)(V [mod(k−1,4)]

m (t−τd)−Esyn)
(11)

where gsyn=0.2 mS for sub-threshold stimuli, αs=1.0 ms−1,

Esyn=0 mV , τd=10 ms, Cc = 1.5(T−6.3)/10, and in which

the Gaussian white noise, I
[k]
GWN (t), has the following sta-

tistical properties:
{

E[I
[k]
GWN (t)] = 0

E[I
[k]
GWN (t)I

[k]
GWN (t + τ)] = σ2δ(τ)

(12)

where E[ ] and δ( ) stand for the expectation operation and

Kronecker’s delta function, respectively, and σ2 denotes the

variance of the Gaussian white noise.

Transmembrane potentials were numerically calculated at

a sampling step of 1 ms by simultaneously solving the HH

equations (1)-(11) with the Euler method. The spike firing

times were determined by detecting when the transmembrane

potential reached its maximum value and was greater than
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Fig. 5. ISI histograms at S.D.s of 20.0, 50.0, and 100.0 with a bin
width of 500 µs at 6.3 oC The Type1 oscillation with 43ms ISIs
was observed at an S.D. of 20.0 in the top trace, while the Type2
oscillation with 12 ms ISIs was observed at an S.D. of 100.0.

Fig. 6. ISI histograms at S.D.s of 40.0, 60.0, and 100.0 with a bin
width of 500 µs at 15.0 oC The Type1 oscillation with 44ms ISIs
was observed at an S.D. of 40.0 in the top trace, while the Type2
oscillation with 7 ms ISIs was observed at an S.D. of 100.0.

50% of the peak amplitude of action potentials. The inter-

spike interval (ISI) histogram was generated from spike firing

times, where the bin width of the ISI histogram, bw, was

set at 500 µs. From those histograms the probability of

firing spikes at the oscillation period was estimated to quan-

titatively evaluate how the added Gaussian white noise can

improve sub-threshold synaptic transmission in recurrent HH

neuron models. All computer simulations were performed on

an IBM compatible PC with a Core 2 Quad Q6600 CPU.

III. RESULTS

The effect of the addition of noise to the network was

tested with increasing the S.D. of noise and measuring the

resulting spike firing induced. Figure 2 shows the transmem-

brane potentials V
[k]
m (t) in mV as a function of time (0-250

ms) for four HH neuron models (k = 0, ..., 3) at an S.D. of

40.0 at a temperature of 15 oC. Type 1 oscillation with an

Fig. 7. ISI histograms at S.D.s of 40.0, 60.0, and 100.0 with a bin
width of 500 µs at 25.0 oC The Type1 oscillation with 44ms ISIs
was observed at an S.D. of 63.0 in the top trace, while the Type2
oscillation with 2.5 ms ISIs was observed at an S.D. of 90.0.

Fig. 8. The probability of spike firings vs. the noise intensity at
6.3, 15.0, and 25.0 oC. The probability of the Type1 oscillation was
plotted with “+”, whereas that of the Type2 oscillation was plotted
with “*”. Typical curve of stochastic resonance was observed at
each temperature in the Type1 oscillation, while the probability
monotonically increased as the S.D. of Gaussian noise increased.

oscillation period of 44 ms was generated and corresponds to

the natural oscillations of the network. However, addition of

higher amplitude noise (S.D.=40.0) generated doublets and

lower spike intervals (Figure 3). Further increase in the S.D.

of Gaussian noise to 100 induced the Type 2 oscillation at an

oscillation period of 8 ms (Figure 4). This noise amplitude

is supra-threshold for action potential generation.

The effect of temperature was investigated by plotting

the ISI histograms at various values of the temperature and

various values of the noise amplitude with a bin width of 500

µs at S.D.s of 20.0, 50.0, and 100.0. The Type 1 oscillation

with 43ms ISIs was observed at 6.3 oC at an S.D. of

20.0 (Figure 5 top trace), while an intermediate pattern is

generated at an S.D. of 60.0 and Type 2 oscillation with

12 ms ISIs was observed at an S.D. of 100.0. When the
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Fig. 9. The periods (Mean ISIs) of the Type1 (top) and Type2
(bottom) oscillations against temperature at 6.3, 15.0, and 25.0 oC.
The periods of the Type1 oscillation were found to be insensitive
to temperature, while those of Type2 oscillation were dependent on
temperature.

temperature is increased to 15.0 and 25, similar patterns are

observed but at different values of spike intervals (Figures 6

and 7).

Figure 8 shows the probability of spike firings vs. the S.D.

of Gaussian noise at 6.3, 15.0, and 25.0 oC. The probability

of the Type1 oscillation was plotted with “+”, whereas that

of the Type 2 oscillation was plotted with “*”. Typical

curve of SR was observed at each temperature in the Type1

oscillation, while the probability of spike firing in the Type 2

oscillation monotonically increased as the S.D. of Gaussian

noise increased. These data show that the SR is responsible

for the maximum probability of firing spikes in the Type1

oscillation and not for the Type 2 oscillation, since greater

noise amplitudes are no longer within sub-threshold stimuli

for Type 2 oscillation.

The inter-spike intervals for Type 1 and Type 2 are plotted

as a function of temperature in Figure 9. This plot reveals

another significant difference between Type 1 and Type 2

oscillations since Type 1 is independent of temperature while

the inter-spike interval of Type 2 oscillation decreases with

temperature. These data suggest that Type 1 oscillations are

mediated by the network, and that Type 2 oscillations depend

on the intrinsic characteristics of HH neuron models.

IV. DISCUSSION AND CONCLUSION

The simulation results show that additive Gaussian noise to

a recurrent neural network can induce periodic activity with

various noise level. Two types (Type 1 and 2) of oscillations

were induced at low noise and high noise amplitudes. By

varying the amplitude of the noise and temperature, simula-

tions show that the oscillations have different mechanisms of

generation and origin. Type 1 oscillation is a low frequency

oscillation that is generated by a low noise amplitude. As

the noise amplitude is increased, the probability of spike

generation first increases, reaches a plateau and then de-

creases as is typical of SR. Type 2 oscillations, however,

have higher frequencies and the probability of spike firings

increases monotonically with noise amplitude. Therefore,

Type 2 oscillations cannot be attributed to SR.

The analysis of the effect of temperature on the generation

of the oscillations shows that the Type 1 oscillations are

independent of the temperature. The mean value of the period

of the oscillation corresponds to the natural frequency of the

network and therefore depends directly on the network prop-

erties. The mean value of the period of Type 2 oscillations

is dependent on the intrinsic properties of the neurons, i.e.,

refractory periods of HH neuron models due to unavailability

of sodium channels, because higher temperature gives rise to

faster transition rates of sodium channels (See (3)-(4), (6)-

(7)), thereby making refractory periods shorter.

In conclusion, additive noise can generate two types of

oscillations, one that is consistent with SR and temperature

independent and one that is temperature dependent and relies

on the intrinsic properties of the network. These results

could be important for understanding the role of noise for

generations of normal oscillations such as gamma waves but

also abnormal activity such as interictal spikes. In the future,

it will be important to employ simulations in more realistic

models incorporating different types of neurons, different

types of ion channels, and inhibitory synapses.
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