
  

  

Abstract—A modeling-control paradigm to regulate output of 
the hippocampus (CA1) for a hippocampal neuroprosthesis was 
developed and validated using an in vitro slice preparation.  Our 
previous study has shown that the VLSI implementation of a 
CA3 nonlinear dynamic model can functionally replace the CA3 
subregion of the hippocampal slice.  The propagation of 
temporal patterns of activity from DG→VLSI→CA1 
reproduces the activity observed experimentally in the 
biological DG→CA3→CA1 circuit.  In this project, we 
incorporate an open-loop controller to optimize the output (CA1) 
response.  Specifically, we seek to optimize the stimulation 
signal to CA1 using a predictive dentate gyrus (DG)-CA1 
nonlinear model (i.e., DG-CA1 trajectory model) and a CA1 
input-output model (i.e., CA1 plant model), such that the 
ultimate CA1 response (i.e., desired output) can be first 
predicted by the DG-CA1 trajectory model and then 
transformed to the desired stimulation intensity through the 
CA1 inverse plant model.  Laguerre-Volterra kernel model for 
random - interval, graded - input, contemporaneous – graded - 
output system is formulated and applied to build the DG-CA1 
trajectory model and the CA1 plant model.  The inverse model 
to transform desired output to input is also derived and 
validated.  We validated the paradigm in hippocampal slices, 
and results showed the CA1 response evoked by the controlled 
stimulation signal reinstated the CA1 response evoked by the 
trisynaptic pathway. 

I. INTRODUCTION 
neuroprosthesis is a device that interfaces with the 

nervous system to improve or restore impaired neuronal 
function.  In the recent past, we have seen many promising 
biomedical innovations helping individuals to pursue a better 
quality of life.  For example, functional electrical stimulation 
(FES) has helped people with spinal cord injuries to move 
their arms and legs; and cochlear implants have helped 
restore hearing to people who have auditory impairments.  A 
new class of neuroprostheses works through decoding neural 
signals which are meant to activate another region of the 
nervous system.  Such neuroprosthesis attempts to replace the 
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computational functions of damaged brain regions in order to 
restore neural communications between intact brain regions.  
Berger was the first to propose this idea of developing a 
“cognitive” neuroprosthesis to restore long-term memory 
formation [1], [2].  The idea was to design a biomimetic 
model of the nonlinear dynamics of the hippocampus – a 
model that would capture how hippocampal circuitry 
re-encodes, or transforms, incoming spatiotemporal patterns 
of neural activity (i.e., the contents of short-term memory) 
into outgoing spatiotemporal patterns of neural activity (i.e., 
the contents of long-term memory).  Such a prosthesis 
requires bidirectional communication between different brain 
regions in order to replace the impaired neural transmissions.  
The idea is that once the device records normal neural signals, 
it transforms them into their corresponding output signals, 
producing activity in brain regions formerly inaccessible due 
to impairment.  In this way, the damaged neural circuitry can 
be rebuilt, or at least functionally replaced. 

 

 
Fig.  1.  The intrinsic trisynaptic pathway in a hippocampus slice. 

A hippocampal slice is an ideal biological preparation to 
use for such a proof of concept.  The major projection in a 
transverse hippocampal slice includes a cascade of excitatory 
synaptic connections involving the dentate gyrus (DG), CA3, 
and CA1 regions, as seen in Fig. 1.  This trisynaptic circuit 
can be maintained in a transverse slice preparation, and each 
synaptic transformation is highly nonlinearly modulated.  
Using a typical engineering perspective, the hippocampal 
slice preparation can be represented as the composite of the 
input-output functions of the DG, CA3, and CA1 subsystems 
(Fig. 2A).  The evoked field potentials in each subsystem are 
measured as input-output signals.  For example, the CA3 
response (field excitatory postsynaptic potentials amplitude) 
can be conceived as the input signal to CA1, and CA1 can be 
conceived as the final output system in the preparation.  An 
analogy to the design of such a hippocampal neuroprosthesis 
is shown in Fig. 2B, where CA3 is assumed to be damaged, 
such that neurotransmission cannot be completed.  In the 
replacement model, the intact region DG sends its outputs to 
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the hippocampal prosthesis model.  The signals propagate 
through the model to generate corresponding outputs to 
stimulate another intact region (CA1).  The goal of this study 
is to regulate CA1 output activities as illustrated in Fig. 2B to 
correspond to the CA1 activities produced through the 
original biological pathway as shown in Fig. 2A. 

 
Fig.  2.  A schematic diagram of (A) the trisynaptic pathway, and (B) a 
hippocampal prosthesis model functionally replacing the original pathway. 

This paper describes the development of a model of 
hippocampal prosthesis in a context of a modeling- control 
framework.  This framework includes a nonlinear modeling 
approach to mimic computation in the hippocampal 
subsystems, and an open-loop inverse controller to drive 
system output (Fig. 3).  In this study , we applied Volterra 
kernel model to build DG-CA1 trajectory model and CA1 
plant model.  An inverse model is then formulated to 
transform the CA1 output into stimulation amplitudes based 
on the CA1 plant model.  Using the desired CA1 output 
predicted by the DG-CA1 trajectory model and converting it 
through the inverse CA1 plant model, makes it possible to 
derive the optimal stimulation, enabling CA1 to produce 
activities similar to the original CA1 activities. 

 
Fig.  3.  Schematic diagram of proposed modeling-control frameworks for the 
development of a hippocampal prosthesis model. 

II. MATERIALS AND METHODS 
Hippocampal slices from 8 to 10-week-old male 

Sprague-Dawley rats (250 to 300 g) were prepared. 
Electrophysiology data were collected through an 
extracellular recording technique using an MEA60 system. 
Details on the slice preparation and experimental setup can be 
found in [3]. 

A. Data collection 
In this study, biphasic currents with a 100 μs duration in 

each phase were applied to all stimulation patterns.  Different 
stimulation trains were programmed in MC_Stimulus and 

used to study the nonlinear properties of different regions.  
There was a 5 to 7 minute waiting period between each 
stimulus train. 

1.  RIT-induced trisynaptic data 
An external bipolar electrode of twisted Nichrome wires 

was used to elicit the trisynaptic response.  Paired-pulse or 
quadruplet-pulse electrical stimulation was applied to the 
perforant pathway of each slice using the external electrode to 
generate electrophysiological responses propagating 
throughout the trisynaptic pathway (evoked field potentials 
with progressively longer latencies in DG, CA3, and CA1).  
When the full trisynaptic response was observed, we 
stimulated the slice with a series of random inter-impulse- 
interval trains (RITs).  Four 300-pulse Poisson distributed 
RITs of a fixed current intensity (biphasic, 150 to 300 μA) 
were delivered to the perforant path (1200 impulses; range of 
intervals: 2 ms to 5 s; mean frequency: 2 Hz).  Response 
amplitudes from selected channels in DG and CA1 regions 
were analyzed to build the DG-CA1 trajectory model. 

2.  RARIT-induced monosynaptic data 
Paired-pulse stimulation was applied to the stratum 

radiatum from a pair of stimulation electrodes in the 
conformal array in order to elicit the monosynaptic CA1 
response.  The pair of stimulation electrodes was selected 
according to their location and their ability to evoke typical 
paired-pulse facilitation.  In this set of experiments, the 
amplitudes of the RIT used to evoke trisynaptic responses 
were modified to a Gaussian distributed amplitude (mean 
amplitude: 150 μA, which is the mean amplitude observed in 
the RIT-induced trisynaptic dataset).  Once the pair of 
stimulation electrodes were determined, four 300-pulse 
random-amplitude, random-interval trains (RARITs) were 
delivered to the slice.  A channel from the CA1 region was 
selected and fEPSP amplitudes were analyzed for suitability 
in constructing the CA1 plant model.   

3.  DARIT-induced monosynaptic data 
In this set of experiments, the amplitude of the RARITs  

were reformed using the optimal stimulation amplitudes 
calculated from the inverse CA1 plant model (See Section 
II-D), called desired-amplitude RITs (DARITs).  Four 
300-pulse DARITs were delivered to the slice through the 
same pair of stimulation electrodes (as in Section II-A-2).  A 
channel from the CA1 region was selected and the fEPSP 
amplitudes were analyzed, comparing them to the 
RIT-induced trisynaptic CA1 response amplitudes. 

B. Configuration of the Laguerre-Volterra kernel model 
A single-input, single-output discrete model was derived 

from Volterra series as expressed below: 
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The zero-order kernel k0 is the value of output y when the 
input is absent.  First-order kernels k1 describe the 
relationship between the mth input xm and y.  Second-order 
kernels k2 describe the relationship between each unique pair 
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of input xm1, xm2 and y.  M is the number of inputs in the series 
and m=0 denotes the present input.  The input to the system 
can be expressed as a series of variable-amplitude, 
random-interval delta functions: 
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where i is the index number of impulses and I is the total 
number of impulses.  The time of occurrence of the ith impulse 
is ti.  In the DG-CA1 trajectory model experiment, Ai is the 
DG population spike amplitude; in the CA1 plant model 
experiment, Ai is the RARITs stimulation amplitude.  
Because the input amplitude is varied, in order to isolate 
influence from present input, we considered the zero lag 
terms in (1) independently, as follows: 

...)()(),()()(),0(

)()()0,()()()0,0(

)()()()0()(

1 1
21212

1
222

1
1122

1
110

1 22

1

+−−+−+

−++

−++=

∑ ∑∑

∑

∑

= ==

=

=

M

m

M

m

M

m

M

m

M

m

mnxmnxmmkmnxnxmk

nxmnxmknxnxk

mnxmknxkkny  

and can be then rearranged as: 
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In order to reduce the number of open parameters, 
estimation of the kernels is facilitated by expanding them on 
the orthonormal Laguerre basis functions L: 
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where α is the discrete-time Laguerre parameter (0 < α < 1).  
The convolution of Laguerre basis functions L and inputs x 
can be represented as 
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where ti is the time of occurrence of the current impulse in the 
input-output sequence and tj is the time of occurrence of the jth 
impulse prior to the present impulse within the kernel 
memory window μ.  The adapted Laguerre expansion of 
Volterra kernels with L basis functions can be rewritten as: 
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where c0, c1, c2… are the kernel expansion coefficients.  Since 
the number of basis functions (L) can be made much smaller 
than the memory length, the number of open parameters is 
greatly reduced by this expansion technique.   

C. Model parameter estimation and kernel reconstruction 
The kernel expansion coefficients (c0, c1, c2…) can be 

estimated via the least-squares method, and can be used to 
reconstruct the Volterra kernels (ki) using Laguerre basis 
functions. 

D. Implementation of the inverse Laguerre-Volterra 
kernel model 
The inverse model was built to transform the output (i.e., 

desired output of a CA1 region) to the input (i.e., desired 
input stimulation to a CA1 region).  In order to develop the 
inverse model such that it would be based on the 
Laguerre-Volterra (LV) model, the original equation (4) was 
rearranged to (5): 
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In Eq. (5), the desired output y and the coefficients c0, c1, 
c2… were obtained during process of model estimation.  All 
the convolution terms could also be determined using the 
coefficients and previous stimulation amplitudes Ai-1, Ai-2….  
Because all the terms are determined, Eq. (5) becomes a 
quadratic equation with unknown desired input stimulation 
(A).  It can be simplified as 
aA2+bA+c=0 (6) 
where  
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such that the transformation of the inverse model (output to 
input) becomes an operation of solving A in Eq. (6).  The 
roots of the quadratic equation can be solved as follows: 
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In this study, the roots are all calculated from A+ term, 
because it provides positive solutions.   

E. The modeling-control framework experiment protocol 
In this study, six experiments were conducted.  The 

experiment protocol to regulate CA1 nonlinear dynamics for 
an in vitro hippocampal prosthesis involves the following 
steps: 
1.  Stimulating the perforant path with RITs, and analyzing 

the trisynaptic responses in DG and CA1. 
2.  Building a DG-CA1 trajectory model using an LV kernel 

modeling approach, and predicting desired CA1 outputs. 
3.  Stimulating the Schaffer collaterals with RARITs, and 

analyzing the monosynaptic responses in CA1. 
4.  Building a CA1 plant model using the LV kernel modeling 

approach, and formulating an inverse CA1 plant model. 
5.  Applying the desired CA1 output from Step 1 to the 

inverse CA1 plant model to calculate the optimal 
stimulation amplitudes. 

6.  Stimulating Schaffer collaterals with the optimal 
stimulation from Step 5, and analyzing the responses in 
CA1. 

7.  Comparing the CA1 responses from Step 1 to those in Step 
6. 
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III. RESULT 

A. The DG-CA1 trajectory model and the prediction 
results 
The RIT-induced hippocampal trisynaptic data were 

analyzed for use in building the DG-CA1 trajectory model.  
The amplitudes of evoked DG population spikes were used as 
measures of the input to the system, and the amplitudes of 
evoked CA1 fEPSPs were used as measures of output of the 
system.  Model estimation was completed using PS 
amplitudes and the intervals of the input-output sequences.  
From six datasets, the slice response amplitudes were 
analyzed and compared with the predicted amplitudes.  The 
mean NMSE was 5.85±1.15%.  This shows that this 
trajectory model captures well the nonlinearity between DG 
and CA1.   

B. The CA1 plant model and the prediction results 
The RARIT-induced CA1 monosynaptic data were 

analyzed for use in building the CA1 plant model.  The 
random amplitudes of the RARITs were used as measures of 
input to the system, and the amplitudes of evoked CA1 
fEPSPs were used as measures of the output of the system.  
The LV kernel model was applied to study the nonlinearity of 
the CA1 system.  Model estimation was completed using 
stimulation intensities and intervals of the input-output 
sequences.  The NMSE between slice response and model 
prediction was 5.61±4.99%, averaged from six datasets.  This 
low NMSE shows that the CA1 plant model can accurately 
predict CA1 amplitudes based on stimulation amplitudes.   

C. The inverse CA1 plant model implementation and 
validation results 
The implementation of the inverse CA1 plant model is 

accomplished using RARIT-induced monosynaptic data.  
The output predictions were acquired from the CA1 plant 
model, and applied as the y in Eq. (5).  The input stimulations 
(A) were calculated as described in the previous section.  The 
operations for solving the root were run through all data 
points in order to process the transformation from output into 
input.   

D. The modeling-control framework simulation results 
Following the protocol in the previous section, CA1 

desired output is first predicted through the DG-CA1 
trajectory model, and then applied to the inverse CA1 plant 
model to derive the optimal stimulation amplitudes.  The 
amplitudes were used to formulate DARITs as described in 
Section II-A-3.  The DARITs were sent into the slice and the 
monosynaptic CA1 responses were recorded.  The proposed 
modeling-control framework was intended to evoke from 
CA1 activities similar to the original CA1 activities.  Thus, 
DARIT-induced monosynaptic CA1 amplitudes were 
compared with RIT-induced trisynaptic CA1 response 
amplitudes.  Results from six experiments are reported here, 
examples from two of those six are shown in Fig. 4.  The 

accuracy of the comparison was evaluated using NMSE of 
the amplitude and the average NMSE was 15.72±8.17%. 

 
Fig. 4.  A comparison of CA1 field EPSP amplitudes in response to 
RIT-induced trisynaptic response (CA1-trysynaptic in blue diamonds) and 
DARIT-induced monosynaptic response (CA1-Controlled in red squares) 

IV. DISCUSSIONS AND CONCLUSIONS 
In this study, an LV modeling approach was applied to 

build the DG-CA1 trajectory model and CA1 plant model.  
The present input m=0 terms in the discrete form of Volterra 
series was moved out (Eq. 3), thus when constructing the 
model using Laguerre expansion technique, the coefficients 
(Eq. 4) were estimated independently.  This method manifests 
the contribution from the present input amplitude.  Both 
models can accurately predict the system outputs for 
broadband inputs, and the small NMSE values indicate that 
the kernels computed from the experiment datasets 
sufficiently capture the nonlinear dynamics of each model.  
The implementation of the inverse model was carried out by 
solving a quadratic equation derived from a LV model.  This 
operation allows us to convert the desired output response 
amplitudes to input stimulation amplitudes in a dynamic, 
recursive manner.  In conclusion, a control theory-based 
paradigm was formulated to regulate CA1 dynamics for our 
in vitro hippocampal prosthesis.  This new paradigm 
essentially predicted CA1 desired output through DG-CA1 
trajectory model, and then was applied to the inverse CA1 
plant model to derive the optimal stimulation amplitudes.  
Lastly, the optimal stimulations drive CA1 to the optimal 
responses.  The low NMSE shows that the control 
theory-based paradigm could drive CA1 system to our 
desired output.  In the future, we will incorporate this 
paradigm into a real time processing platform.  
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