
  

  

Abstract—Referencing is frequently used to remove 
common-mode signals from multielectrode data, in both freely 
moving animals and in vitro preparations. For action potential 
(AP) detection, referencing by subtracting the common average 
signal has been shown to increase AP signal-to-noise ratio 
(SNR). This method fails, however, when large transients occur 
on individual electrodes, as occurs during electrical stimulation 
or with large APs during spontaneous recordings. To deal with 
these cases, we propose using the common median as a 
reference. The common median has an improved SNR for AP 
detection (leading to more isolated single units and more 
detected APs per unit) and, unlike common average 
referencing, does not generate spurious APs when processing 
large single-electrode transients.  

I. INTRODUCTION 
OISE in multielectrode recordings has several origins, 
e.g., thermal noise due to electrode impedance, 

electromagnetic interference from nearby electronics, and 
biological signals that are not of interest to the investigator. 
This noise hinders our ability to detect signals of interest, 
such as action potentials (APs) or local field potentials 
(LFPs). Referencing (i.e., subtracting one time-varying 
signal from another) is one approach to dealing with such 
noise, functioning by removing common-mode signals (e.g., 
biological noise, 50/60 Hz noise) that are shared across the 
electrode and reference [1]. Frequent choices of reference in 
freely moving animals are low-impedance skull screws, 
stainless steel wires, or a high-impedance microelectrode, 
carefully selected so as not to actively record single cells 
(which would otherwise show up on the referenced channels 
with inverted polarity). 
 It was recently reported that using the average signal 
across microelectrode channels was superior to alternative 
references in terms of noise reduction [2]. While useful, the 
average reference has undesirable properties, namely that 
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large signals on a single channel will skew the average 
toward outlying values. These large values then pollute the 
referenced channels, leading to spurious AP detections or 
large baseline shifts. 
 These problems become acute when conducting 
experiments involving microelectrode stimulation, a well-
used experimental paradigm [3-7]. Stimulation pulses are 
typically on the order of 100 mV – 10 V, which is 103-105× 
as large as a typical extracellular AP. Recording electronics 
typically do not amplify linearly in this regime, but the 
signals on the stimulating electrode nevertheless dominate 
any computed average.  
 As an alternative to common average referencing, we 
propose common median referencing. The median is less 
susceptible to influence from outliers, as compared to the 
mean, yet is statistically equivalent when the inter-channel 
variability is Gaussian. When non-Gaussian, the median 
provides a better approximation of the distribution’s center. 

II. METHODS 

A. Surgery 

All work with animals was conducted in accordance with 
the National Institutes of Health Guide for the Care and Use 
of Laboratory Animals and approved by the Emory 
University Institutional Animal Care and Use Committee. 
Adult male Sprague-Dawley rats (350-450 g) were 
anesthetized with isoflurane, several anchoring skull screws 
were implanted, and a craniotomy was drilled over the right 
dorsal hippocampus. After removing the dura, a 16-channel 
microwire array with two rows of 8 electrodes (row 1, 4 mm 
long; row 2, 2.8 mm long) was carefully lowered into 
craniotomy, with the longer row of the array targeted to the 
CA3 region, and the shorter row to CA1. Proper depth 
(usually 3-4 mm ventral to pia) was determined by 
monitoring electrophysiological recordings during 
implantation, using our lab’s custom recording hardware and 
software, the NeuroRighter system [8]. The craniotomy was 
then sealed with dental acrylic and the rat was allowed to 
recover for 5-8 days before recordings began. 

B. Recording 
Rats were tethered to a 100× gain recording headstage and 

a custom-built stimulator [8], but otherwise freely mobile in 
a Plexiglas enclosure. Extracellular signals, acquired at 25 
kHz, were band-pass filtered from 1-9000 Hz in hardware. 
In software, the signals were split into two streams: spikes 
(filtered from 500-5000 Hz) and LFPs (1-500 Hz, 
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downsampled to 2 kHz). Data was stored for offline 
analysis, which was conducted using MATLAB r2008. 
Spikes were detected as threshold crossings of ≥5× RMS, 
unless otherwise specified. Spikes were sorted using 
superparamagnetic clustering across wavelet coefficients 
with the Wave_clus software [9]. 

III. RESULTS 
We first describe theoretical results for signal 

contamination and attenuation with common average 
referencing, then present empirical data to illustrate the 
advantages of common median referencing over average 
referencing in practice. 

A. Theoretical Contamination and Attenuation 
Each signal si contributes 1/Nth of the average reference 

signal’s amplitude, where N is the number of electrodes 
averaged. Two effects are noted. First, each si is attenuated 
by a factor of 1 − 1/N, since its contribution to the average is 
now being subtracted from itself. Second, the inverse of the 
signal will now be present on all channels with an 
attenuation of 1/N (Fig. 1). 

 
Fig. 1. Theoretical attenuation (black) and contamination (red) of channels 
with common average referencing. 

These results show that, for example, using a 10-electrode 
array and common average reference, that a 100 µV AP 
would be attenuated to 90 µV, and that a “phantom” 10 µV 
AP would show up on every other channel. 

B. Spontaneous Experimental Data 
Is the worry of contamination well founded, or are the 

spurious spikes too attenuated to be detected as APs? 
Empirical data suggests that the worry of induced spurious 
spikes is real. For example, a recording from an anesthetized 
rat hippocampus, using 16 electrodes, shows threshold-
crossing contamination when large APs are detected (Fig. 2). 
That is, with common average referencing, the “bleed-
through” of an AP on one channel causes a spurious action 
potential on all other channels. These spurious APs cross the 
3.5× standard deviation threshold, from Ludwig et al. [2], in 
11/16 channels, and the 5× threshold in 1/16 channels (not 
including the channel of the actual AP in either case). This 
same type of contamination occurred 22 times in 5 sample 
minutes of recording. These problems do not occur with 
median referencing (0 times in 5 minutes). 

 
Fig. 2. Contaminated traces with common average referencing vs. 

common median referencing. A large action potential on a single channel 
dominates the mean, creating spurious APs on all other channels (red 
arrow) when using average referencing (top). These problems do not occur 
with median referencing (bottom). 

C. Stimulation Data 
While the spurious spikes are problematic in spontaneous 

data, a more notable problem arises with electrical 
stimulation. When delivering a stimulus pulse to a single 
electrode, the resulting artifact is referred to all other 
channels when using common average referencing (Fig. 3).  

The data shown in fig. 3 is broadband filtered (1-9000 
Hz). If purely interested in APs, a much tighter band-pass 
would likely be used (e.g., 500-5000 Hz), in which case the 
prolonged baseline shift would be less notable. In either 
case, however, common median referencing is impervious to 
these contamination artifacts. 

 
Fig. 3. Stimulus artifact contamination. The original trace (black) shows 
minimal baseline shift following the stimulation pulse. The common 
average reference (red trace) reflects the long baseline shift from the 
stimulating electrode. Common median referencing (blue trace) avoids this 
problem. 

D. Noise Reduction 
To assay the effectiveness of the two referencing modes 

(average vs. median), we computed the RMS noise value for 
referenced band-pass filtered signals (500-9000 Hz), suitable 
for detecting APs. The data (duration of 2 minutes) was 
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acquired from 16 electrodes in the hippocampus of a freely 
moving rat.  

Common average referencing had a mean RMS of 6.1 ± 
0.5 µV across electrodes, common median referencing 6.2 ± 
0.6 µV (compared to 7.3 ± 0.6 µV for unreferenced data). 
The median reference RMS value is significantly greater (by 
0.1 µV) than the average reference RMS (P < 0.01, 
Wilcoxon sign-rank test). However, it should be recalled that 
with median referencing there is no statistical attenuation of 
signals. Thus, while the RMS noise for each channel using 
median referencing is higher than that of average 
referencing, the SNR is still greater with median referencing. 
As an example, given the above empirical RMS values from 
16 electrodes, an AP with 100 µV amplitude will be 
attenuated to 94 µV using common average referencing (or 
15× the RMS noise level. For median referencing, the same 
AP (unattenuated) is 16× the RMS noise level. 

E. Detection Performance 
Using 5 minutes of spontaneous recordings from three 

animals (16-channel arrays in the dorsal hippocampus; see 
Methods), we compared the effectiveness of common 
average and common median referencing. The data was 
referenced separately according to both methods, APs were 
detected (using 5× the RMS threshold of the referenced data, 
specific to each channel and each referencing method), and 
APs were sorted with superparamagnetic clustering of the 
wavelet decomposition [9]. 

With common median referencing, 0.66 additional well-
sorted units were detected per dataset, on average (Fig. 4). 
Additionally, across sorted units, there was an average 
increase of 10% in the number of detected APs (Fig. 4). In 
no cases did common median referencing perform worse 
than common average referencing. 

 
Fig. 4. AP detection is improved with common median referencing vs. 
common average referencing. (A) Additional units are detected with spike 
sorting in 2/3 datasets, using common median referencing. (B) More APs 
are detected from sorted units with common median referencing as 
compared to common average referencing. 

IV. DISCUSSION 
Multielectrode recordings have provided useful insights 

into normal and pathological brain function [10]. 
Biophysical and electromagnetic noise sources, however, are 
a constant nuisance that obscure target neural signals. A 

simple method for reducing correlated noise (common-mode 
noise) is digital or analog referencing [1]. Such referencing 
often selects a single electrode with low activity as a 
representation of background noise. This method is highly 
sensitive, however, to any uncorrelated noise on the 
reference channel, such as APs, stimulus artifacts, or other 
localized biological transients. In the field of 
electroencephalography (EEG), common average references 
have routinely been used as one means of preventing 
uncorrelated noise from affecting referenced channels [1]. 
This method was recently applied to multi-microelectrode 
arrays to improve the detection of APs, with an identical 
rationale [2]. 

The mean of a statistical sample, especially when there is 
a small sample size, is dominated by any occurring outliers. 
For multielectrode neural recordings, this translates to large 
APs from one electrode appearing on referenced electrodes 
(Fig. 2) or baseline shifts from stimulus artifacts 
contaminating signals from other electrodes (Fig. 3). The 
median provides a more stable representation of a 
distribution’s central tendency that is less affected by large 
transients on a few channels. 

While the median provides an improved estimate of the 
common signal, the RMS noise of this estimate is higher for 
the median referenced signals than for the average 
referenced signals. This is expected, in fact, since for most 
probability distributions, the absolute value of the median is 
guaranteed to be less than or equal to the mean [11, 12]. 
Therefore, since the referencing signal has lower power, the 
referenced signal will have a slightly higher power than the 
comparable averaged referenced signal. This higher power 
will lead to an improved SNR of the median referencing 
scheme as compared to the average referencing scheme, 
even before accounting for the average referencing scheme’s 
signal attenuation. Indeed, when analyzing data from 
multiple animals, common median referencing resulted in 
more isolated single units and more APs per unit than 
common average referencing (Fig. 4). 

While a common median reference is readily computed in 
real-time (e.g., we routinely use it during 64-channel 
recordings with our NeuroRighter software [8]), it 
nevertheless takes longer to calculate than the simpler 
common average reference. When scaling to very high 
channel counts (e.g., 1000s to tens of 1000s of electrodes 
[13]), computationally simpler methods might be 
advantageous. Yet robust statistics are still crucial for high 
performance. In these cases, hybrid methods might be used 
(e.g., removing outliers, then computing a common average 
[14]) that preserve the spirit of a robust statistic [15], but are 
less computationally expensive. 

V. CONCLUSION 
Empirically and theoretically, median referencing leads to 

a higher SNR for APs, and prevents false positive detections 
of spurious APs or other transients (e.g., stimulus artifacts). 
The method is simple and easily computed in real-time 
during data acquisition. 
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