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Abstract: Wireless Body Area Sensor Networks 
(WBASN) is an emerging technology which utilizes 
wireless sensor nodes to implement real-time wearable 
health monitoring of patients to enhance independent 
living. These sensor nodes can be worn externally to 
monitor multiple bio-parameters (such as blood oxygen 
saturation (SpO2), blood pressure and heart activity) of 
multiple patients at a central location in the hospital. It is 
important to have an estimate of the time the first node 
will fail in order to replace or recharge the battery 
because the loss of critical data is not acceptable.  
Simulation is used to determine the lifetime of WBASN. 
The lifetime of the WBASN is defined as the duration of 
time until the first node fails due to battery depletion. In 
this paper, a parametric model of a health monitoring 
network (HMN) is created with sets of random input 
distributions. Probabilistic analysis is used to determine 
the timing and distribution of node failure in the HMN. 
 

I. INTRODUCTION 
ROBABILITY analysis is performed using the Monte Carlo 
method. This involves generating random input vectors 
with known distributions, and running the simulation 

with these vectors as input. The resulting output vectors 
provide the output distributions. Alternatives such as the 
mean value methods, generally assume a deterministic 
system with differentiable variables [1]. In most networked 
systems, the presence of discrete structures often results in 
discontinuities, and possibly non-monotonic responses 
which can result in large errors due to local minima. The use 
of randomized methods such as random back off in most 
multi-hop networks such as LEACH also results in non-
deterministic behavior. Thus, the Monte Carlo method is the 
best option to estimate probability distributions of node 
failures in a WBASN.  

A notable research project that addresses the needs of 
medical care such as node mobility, a wide range of data 
rates and high degrees of reliability and security is CodeBlue 
[2]. CodeBlue integrates sensor nodes and other wireless 
devices into a disaster response setting. A pulse oximeter 
sensor, two-lead electrocardiogram (ECG) and a specialized 
motion-analyzer sensor are used to collect physiological 
information for the prioritization of treatment by first 
responders.  

Despite the success of CodeBlue, the concern for quality 
of service in terms of battery life of the WBASN is still not 
address in that project.  A common type of failure happens 
when a node runs out of energy and shuts down. The timing 
and distribution of such failures critically impact the ability 

of the WBASN to collect real-time data of the physiological 
status of patients in a health care environment. Current 
approaches depend on analytical or experimental methods 
with expensive hardware trials. For example in [3] [4], 
mathematical models and hardware measurements are used 
to determine the lifetime of wireless sensors. However, 
because of many constraints imposed on sensor networks, 
such as energy limitation, decentralized collaboration, and 
fault tolerance, validation of algorithms in hardware for 
sensor networks tend to be quite complex and time 
consuming. Therefore simulation is used in this work to 
determine the lifetime of WBASN for health monitoring of 
patients.  

In this paper, probability distributions of energy use and 
network lifetime are obtained from multiple sample runs 
using the Monte Carlo method. Specifically, the probability 
distributions of the average power consumption of each node 
before nodes start to fail, and distributions of nodes lost as a 
function of time are generated. In order to make the 
simulation time manageable approximation techniques are 
used to reduce the simulation time.  

Commercially off-the-shelf (COTS) components are 
modeled for the simulation. The rest of the paper is 
organized as follows: section II explains the simulation 
models, input randomizations and Monte Carlo method used, 
the results are discussed in sections III. Finally, section IV 
concludes the paper and discusses future work. 

II. SIMULATION OVERVIEW 
The network is modeled in the J-Sim network simulator 

[7]. The architecture of the WBASN follows the J-Sim 
component model. J-Sim uses three top level components: 
the target (source) node (which produces stimuli), the sensor 
node (that reacts to the stimuli), and the sink (base station) 
node (the ultimate destination for stimuli reporting). Sensor 
nodes are modeled as a combination of physical components 
(such as CPU, battery etc.) and logical components 
representing the protocol stack.  Each mobile node has ECG 
and pulse oximeter sensors that monitor heart rate and pulse 
oxygen respectively. When a node detects abnormal ECG or 
pulse stimuli beyond some threshold, it attempts to report 
this event to the base station. Sources produce events with 
random magnitudes at random intervals. Mobility and 
stimulus related variables are treated as random variables. 
Stimuli (ECG and SpO2) are also randomly generated. The 
mobile nodes are implemented with Smooth Random 
mobility [5]. This captures mobility characteristics of 
temporal dependence on velocity which provides a more 
realistic estimation of patient mobility.  
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Three routing protocols are used to test the method: A 
basic single-hop protocol to provide a baseline, an Ad-hoc 
On-demand Distance Vectoring (AODV) [6] which is an 
established protocol for lower density networks and a basic 
multi-hop protocol which assumes that each node has a GPS 
to determine the position of other nodes on its path to the 
base station. 

A. Input Distributions 
The input sources are in fixed positions and generate 

events at known distributions. The events are ECG and SpO2 
stimuli. The sources generate ECG stimuli and SpO2 at 
constant intervals ∆Ts with exponential distributions. The 
exponential distribution was chosen because it represents a 
constant average rate. The sensors sample the received 
signals as a Gaussian process with Gaussian distributions. 
The Gaussian distribution is chosen because the parameters 
of ECG (complexes, inter-wave segments and cardiac 
intervals) and SpO2 are detected independently. Once the 
stimuli are generated, the power of the events is added to the 
model.  The powers of ECG and SpO2 stimuli have a 
Gaussian distribution.  

A further consideration that was incorporated into the 
HMN is mobility.  The mobile wearing sensor nodes move 
in a preferred speed , where  is 

preferred speed of node i . The preferred speed set for each 
node is assumed to be random. If a node has a preferred 
speed set{ , then the probability distribution is 
given by (1). 
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The speed of the mobile nodes is changed incrementally 
from the current speed to the targeted new speed 

by acceleration speed or deceleration speed with a 
probability distribution function given by (2). 
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The movement direction of the sensor nodes is uniformly 
distributed in the interval ]2,0[ π , with probability 
distribution given by (3). 
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When the direction of a mobile node is about to change, the 
new movement direction is also selected according to the 
probability distribution function described by (3).  

The node continues to move in the new direction with the 
given distribution.  Future work will be to utilized data of 
elderly patients in assisted living communities to enhance 
this mobility model. 

B. Simulation Stages 
Monte Carlo analysis using full lifetime simulation is 

impractical due to the nature of the WSN nodes that can last 
for months at a time. An alternative is to split the simulation 
into two stages and rely on the power used by nodes being 
roughly constant in the steady state. 
Stage 1 Simulation: In stage 1, each node is initialized with 
fully charged batteries (i.e. the energy is Emax). The output of 
the stage 1 simulation is the energy ∆Ei used by each node in 
a fixed time (Te = 500s in this work). The simulation is run 
for time Te to obtain the average power used by each node. 
The time is determined based on the average interval τ as Te 
= n τ (n =5 was used in this work).  The average power used 
by each node is Pi =

e

i

T
EΔ . 

Stage 2 Simulation: In stage 2, the powers obtained in stage 
1 are used to determine when the first node fails. The second 
stage uses sequential approximation to reduce the running 
time as follows: The energy consumed by each node in stage 
2 run is approximated by: 
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The starting energies of each node in stage 2 are, therefore 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

}max{
1max P

P
EE i

i
                                                     (6) 

The power consumed by a node in transmitting or 
receiving stimuli is within the range , 
therefore this approximation ensures that the node using 
maximum power has zero energy at the start of the next 
iteration. Monte Carlo method is performed using the 
starting energies in (6). The starting energies of each node 
before each simulation run are given by sequence: 
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Run 3:        
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Then the starting energy for the nth run would be   
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The runs form a geometrical distribution with expectation 

given by 1/p where p is the probability of first node failing. 
The probability of the first node failing after the stage 2 is 
given by 
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Each simulation run M generates the number of working 

nodes as a function of time t given by . The change 
in time for the nodes to reduce from maximum working 
nodes to is given as the time for the first node to 
fail. 

N

N
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III. RESULTS 
A HMN with 23 bio-sensor nodes, a base station and two 

target or source nodes is simulated with the J-Sim network 
simulator. Each patient moves in a square grid of 200m by 
200m. The motion of each patient is simulated with the 
Smooth Random Mobility model, which exhibits temporal 
dependence on velocity. Each sensor node is injected with 
the appropriate traffic rate - 8Kbits/s for the ECG sensor and 
64bits/s for the pulse oximeter sensor. ECG assumes high 
traffic rate because of the detection of its numerous 
parameters (P-, T-, QRS-complexes, P-wave, R-wave, T- 
waves, and the cardiac intervals). The transport agent is the 
User Datagram Protocol UDP. The J-Sim free-space 
propagation is used as the radio communication model. The 
wireless physical layer parameters are adjusted according to 
those of the CodeBlue [1] platform, which utilizes the 
Chipcon [8] CC2420 radio interface. The initial energy of all 
nodes is 25200J; this value is chosen as a starting point. The 
simulator running time is 500s.  The number of runs is 
different for each protocol.  

A. Network Infrastructure Failure Analysis 
This shows the Cumulative Distribution Functions (CDFs) 

of the time to lose a fraction of the working nodes for the 
various routing protocols. Fig. 1 shows the CDFs of the time 
to lose a fraction of the nodes for AODV protocol. The data 
for this distribution is separated by runs. The runs for 10%, 
50% and 96% CDFs are shown, which is interpreted as the 
distribution of the time to lose 90%, 50%, and 4% of the 
nodes respectively. These distributions can be used to 
approximately calculate the time that it takes for the first 
node running AODV to fail.  These calculations can be done 
as follows:  Considering that the simulated network 
consisted of 23 nodes, the runs corresponding to the subplot 
(in Figure 1) that shows “96% of the nodes remaining” mean 
that  node has failed. This is approximately 104 
days considering the mean (50%) performance. The lifetime 
of the network running AODV is very short. The 50% and 
90% CDFs in Fig. 1 are somewhat similar indicating that the 
number of nodes drops quickly once the nodes start to fail. 

123*100/4 ≈

Fig. 2 shows similar CDFs for single-hop protocol. Using 
similar analysis for single-hop, the distribution of the time 
for the first node to fail can be found to be approximately 
220 days considering the mean performance. Secondly the 
difference in time between the 50% and 90% CDFs in Fig. 2 
are quite wide indicating the number of nodes drops slowly 
once the nodes starts to fail. Similar results were obtained 
for Multi-hop protocol in Fig. 3. The distribution of the time 
for the first node to fail to fail was centered around 300 days 

considering the mean performance. The lifetime of the 
Multi-hop protocol is very long. Also the number of nodes 
drops quite slowly once the nodes start to fail. 
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Fig. 1: Distributions of time required to be left with 96%, 

50%, and 10% working nodes for a network using 
AODV protocol  
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Fig.  2: Distributions of time required to be left with 

96%, 50%, and 10% working nodes for a network using 
single-hop protocol 

 

B. Network Lifetime 
This shows the lifetime of the nodes running various routing 
protocols represented as mean time and standard deviation in 
days. Fig. 4, 5 and 6 show the lifetime of the nodes running 
the AODV, single-hop and multi-hop protocols respectively. 
The mean time for the first node running AODV to fail is 
approximately 100 days with a standard deviation of 13 
days. The mean time for first node running single-hop 
protocol to fail is 190 days with a standard deviation of 30 
days. Similarly it takes 339 days for the first node running 
multi-hop to fail with a standard deviation of 84 days. 
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Fig. 6: Mean Lifetime (in days) of nodes for the HMN 

running Multi-hop Fig.  3: Distributions of time required to be left with 
96%, 50%, and 10% working nodes for a network using 

multi-hop protocol IV. CONCLUSIONS  
The model described effectively estimate the lifetime of 

the WBASN by incorporating probabilistic behavior. The 
lifetime for the AODV protocol is short and this is due to the 
complexity of the routing protocol in sending route request 
(RREQ) and route reply (RREP) messages. The lifetime for 
the Multi-hop protocol is quite long due to the simplicity of 
the protocol but a standard deviation of 84 days is too wide 
for this protocol to be a good choice for WBASN.  
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In future work, the distributions of the monitored signals 
(ECG, SpO2) will be improved to capture realistic scenarios 
such as “false alarms”, that is, when the blood pressure or 
ECG of a patient rises simply because the patient is walking 
up the stairs. Additionally, new protocols will be 
incorporated and evaluated to determine their suitability for 
use in a HMN. 

Fig. 4: Mean Lifetime (in days) of nodes for the HMN 
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