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Abstract— We implemented a model for prediction of heart
rate during Lokomat walking. Using this model, we can predict
potential overstressing of the patient and adapt the physical
load accordingly. Current models for treadmill based heart rate
control neglect the fact that the interaction torques between
Lokomat and human can have a significant effect on heart rate.
Tests with five healthy subjects lead to a model of sixth order
with walking speed and power expenditure as inputs and heart
rate prediction as output. Recordings with five different subjects
were used for model validation. Future work includes model
identification and predictive heart rate control with spinal cord
injured and stroke patients.

I. INTRODUCTION

Treadmill training is part of the rehabilitation administered

to patients after stroke, spinal cord injury or traumatic brain

injury. The length and intensity of training was found to

have significant impact on the rehabilitation success [13].

As manual treadmill training is exhausting for patients and

therapists alike, the driven gait orthosis Lokomat was devel-

oped to automate treadmill training and allow longer training

durations [6].

Monitoring and controlling heart rate during exercise can

be crucial for preventing overtraining and in providing an

efficient training protocol to subjects [1]. We expect control

of heart rate during Lokomat exercise to be beneficial to

neurological patients for two reasons. On the one hand, the

heart rate should be monitored during training for secu-

rity concerns. The Lokomat should take preventive counter

measures before the patient becomes physically overstressed

and reduce the amount of physical load the patient has to

carry. On the other hand, a control mode which stabilizes

the heart rate at a desired value would offer the possibility

of patient specific cardiovascular training in the early phase

of rehabilitation in the Lokomat.

Heart rate control based on control of treadmill speed

has been employed previously using PID controllers and

fuzzy logic [16] as well as robust control [4], [5]. All of

these controllers were developed for subjects running on a

treadmill up to 8km/h. That makes them inapplicable for

the Lokomat, which is limited to walking speeds up to 3.2
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km/h for patient safety. The only controller with explicit

constraints on the control input was the approach of Su [15],

who developed a model predictive controller with an upper

boundary on treadmill velocity and treadmill acceleration.

Previously developed cardiovascular models are not appli-

cable to the Lokomat, as the patient can walk either actively

or passively in the Lokomat. Previously, we showed that this

difference in physical effort (or power exchanged between

Lokomat and human) results in significantly different heart

rates (p ≤ 0.05) [11]. Large forces are employed by

the orthosis that guides the patient’s legs on the reference

trajectory. The patients have the possibility to walk actively,

thereby pushing with high forces into the orthosis, or behave

passively and getting moved by the Lokomat.

Based on a cardiovascular model that describes the depen-

dency between heart rate and the treadmill speed, we want to

predict the heart rate of subjects walking in the Lokomat gait

orthosis. As our approach is model-based, it can foresee the

temporal evolution of the heart rate and can predict when the

heart rate might increase over a security threshold caused by

the physical stress of the Lokomat training. The model will

also be the basis for model-based control during Lokomat

walking, in which the controller takes the power exchanged

between Lokomat and patient into account.

II. METHODS

A. Power during Lokomat walking

As active or passive behavior during Lokomat walking will

result in significantly different heart rates, we had to include

the influence of power expenditure of the human during

the training as part of the model. The power output during

exercise on a bicycle ergometer [18], [3], [2] and during arm

cranking [3] were reported to correlate linearly with heart

rate. Power during Lokomat walking can be computed as

PLokomat = τT q̇, (1)

where τ and q̇ refer to the moments and angular velocities

excerted by the subject on the Lokomat. Due to the sensor

placement in the Lokomat, we can only record the com-

bination of torques exerted by the human and the torques

exerted by the Lokomat actuators. Having recorded the gait

trajectory, we computed the torques that would be needed

to move the empty Lokomat on this trajectory and subtract

it from the recorded torques. This results in the torque

exchanged between Lokomat and human. If these torques

are positive, the human has provided kinetic energy to the

Lokomat, which means that the Lokomat had to slow the

human down. A negative torque means that the Lokomat
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Fig. 1. Speed profile (A) and friction profile (B) for model identification
experiments

provided additional torque to the human, who was not

generating enough torque to walk actively.

B. Model identification

To define a model for the cardiovascular process of

subjects during Lokomat walking, we identified the main

effects of change in treadmill speed and change in power

output on the heart rate. We extracted heart rate from ECG

recordings using a steep slope algorithm. We recorded heart

rate data at different walking speeds (Fig. 1) from five

subjects (3male, 25.0 years±2.3, 77.2kg±8.0) subtracted

baseline heart rate during standing and averaged the resulting

heart rate increase. For investigation of effects of power ex-

penditure on the heart rate, we applied a velocity dependent

friction force onto the gait orthosis. The friction was scaled

such that 100% friction force simulated walking in hip deep

water as previously described in [12]. We recorded the total

power when subjects walked in zero impedance mode at

different levels of treadmill speed and three different levels

of friction. Friction was computed as

Ffriction = νv2

TM (2)

where ν is the friction coefficient and vTM the Lokomat

treadmill speed. The friction force was projected back as

torques onto the orthosis. This friction caused additional

power expenditure adding up to the expenditure related to

walking.

Inputs to the model were treadmill speed and power expen-

diture of the human; output of the model was the change in

heart rate from baseline heart rate recorded during standing.

We used Matlab Simulink 2007b (www.mathworks.com) for

implementation of real time heart rate prediction. Increases

in walking speed linearly increase heart rate [7], [9], [14],

[1], which we modeled as a first order PT element. This can

be interpreted as lowpass-like reaction to a sudden increase

of oxygen demand. A treadmill acceleration results in an

overshoot in heart rate before steady state is reached [7], [9],

which we modeled as second order DT element. Holmgreen

reported a drop in arterial pressure that reached its minimum

10 seconds after onset of exercise [10]. The heart rate

overshoot might be caused by a first overreaction of the

cardiovascular system to compensate for the blood pressure

drop. Feroldi et al argued that the overshoot might be a

result of changes in the balance between sympathetic and

parasympathetic activity [8]. An undershoot can be observed
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Fig. 2. The heart rate model as a block chart. Input are the treadmill speed
and the power exchanged between the human and the Lokomat

after a negative acceleration, modeled as a second order DT

element as well. To separate the overshoot and undershoot

dynamics, a nonlinearity was inserted after the overshoot

and undershoot dynamics. The output of the undershoot was

only added to ∆HR (Fig. 2), if its value was negative,

whereas the output of the overshoot was added to ∆HR

if its value was positive. This was implemented using relay

blocks in Simulink, which made the model nonlinear. The

power expenditure of the human was taken as a linear input

parameter modeled as a first order PT element. After longer

training durations, a fatigue effect is present [7], [9], [17]

that results in a higher resting heart rate after a physically

demanding task than before the tasks. This fatigue effect

was modeled as a first order PT element. All inputs were

scaled with a scaling factor. This resulted in a model with

eleven parameters: five scaling factors and six time constants

(Fig. 2).

C. Intra and inter subject variability

To perform the parameter identification of single subjects,

we investigated the parameter variability inter and intra

subject. Inter subject variability refers to the question, if

some parameters can be seen as constant across subjects and

which ones are left to be subject specific. As the system is not

convex, we used a genetic algorithm to minimize the squared

error between predicted and recorded data. We compared the

optimized parameters of all subjects and analyzed which ones

could be seen as subject specific and which ones could be

set constant for all subjects. Intra subject variability refers

to the question, if subjects needed to be re-identified before

each training or if previously identified parameters could be

reused. We recorded three data sets from two subjects (both

male,24 and 25 years) with the same velocity profile in the

Lokomat. Twice on day one (morning, afternoon) and once

on day two (afternoon).

D. Model verification

We used the r2 coefficient of determination for evaluation

of our simulation results. To verify our model, we used a

speed and friction profile shown in (Fig. 3). Five subjects

walked in the profile (3male, 24.6 years±0.6, 69.0kg±10.8).
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Fig. 3. Verification and validation of the heart rate model. A: Speed profile
B: friction profile
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Fig. 4. A: Mean heart rate and standard error of five subjects for model
identification using the speed and friction profile shown in B.

We first optimized over the whole dataset to obtain an

optimal prediction of the recorded heart rate.

E. Heart rate prediction

For the future application of real time heart rate control,

we need to identify the subject specific parameters at each

training anew. This has to be done as quickly as possible,

as one training session is typically between 30 and 45

minutes long. We performed an online identification of

subject specific parameters, optimizing only over the first

13 minutes of the speed profile in (Fig. 3). After the first 13

minutes, the model parameters were fixed and used for heart

rate prediction. We compared the r2 values for the whole

trial and the optimal parameters for both cases.

III. RESULTS

A. Results for model ID

We identified the eleven parameters of our heart rate model

for the averaged heart rate curve of five healthy subjects

during Lokomat walking. Our data showed the dependency

of heart rate on treadmill speed and power expenditure as

depicted in Figure 4.

Initial trials showed that subjects had similar heart rates

in reaction to the velocity profile shown in (Fig. 1) when

recorded on consecutive days at the same time. Recordings

at different daytimes showed different results in heart rate

TABLE I

R
2 VALUES OF MODEL IDENTIFICATION: COMPARISON BETWEEN

OPTIMIZATIONS OF ALL ELEVEN PARAMETERS WITH OPTIMIZATION OF

ONLY FOUR SUBJECT SPECIFIC PARAMETERS

R
2 for optimization R

2 for optimization
of eleven parameter of four parameters

Subject 1 0.90 0.90
Subject 2 0.32 0.30
Subject 3 0.93 0.88
Subject 4 0.93 0.92
Subject 5 0.94 0.94

(data not shown). We therefore decided to re-identify each

subject before the Lokomat training.

Optimizing over all 11 parameters took several hours

on a standard Pentium IV with 2GHz. It was therefore

desirable to reduce the amount of parameters needing to be

optimized. Optimization for each individual dataset over all

eleven parameters revealed that only the scaling gains were

subject specific. All parameters of the dynamics (overshoot,

undershoot and the fatigue parameters) remained within plus

minus 10% of their respective means. The same was true

for the slow exhaustion gain parameter. They were therefore

set constant. All other gain parameters were subjective, time

specific and needed to be identified for each training session

and for each subject anew.

We quantified the loss in prediction quality caused by

optimizing over 4 instead of 11 parameters. Using 11 opti-

mized parameters, we obtained coefficients of determination

larger than 88% for all but one subject. Only subject 2 could

not be identified properly. This was due to the fact that the

intervention (increase in treadmill speed) did not cause a

significant increase in heart rate. The heart rate increase

caused by the intervention was in average 5 beats per minute,

which is too close to the heart rate variability of healthy

subjects (4 beats per minute).

The r2 values of optimizing over the whole dataset with

eleven parameters are compared with the r2 values in Table I

for an optimization with seven globally constant values and

four variable parameters. In exchange for a mean decrease

of r2 of 0.02, we were able to reduce the time necessary for

optimization to approximately two minutes.

B. Model verification

Model verification was performed with the velocity and

friction profile shown in Fig. 3. The best result is shown

in Fig. 5. When we reduced the identification time to 13

minutes (see Methods section), we saw only a slight decrease

in prediction quality. (Table II).

IV. DISCUSSION AND OUTLOOK

For most subjects, the identification could be performed

within the first 13 minutes of Lokomat training. The per-

formance of our model was thereby limited by two factors:

the heart rate variability (HVR) and the signal to noise ratio

(SNR). With increasing HRV, the r2 values droped, as we did
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power profile during the validation.

TABLE II

PREDICTION QUALITY OF THE HEART RATE MODEL WITH OPTIMIZATION

OF 4 PARAMETERS. COMPARISON BETWEEN AN OPTIMIZATION OVER

THE WHOLE DATA WITH AN OPTIMIZATION WHICH OPITMIZES OVER THE

FIRST 13 MINUTES AND THEN PREDICTS THE REST OF THE DATASET.

SUBJECT 1 AND 2 WERE BOTH RECORDED THREE TIMES.

Subject Recording R
2 for R

2 for
number optimization over optimization

entire dataset over first 13 min

1 1 0.59 0.47
2 0.82 0.81
3 0.73 0.68

2 1 0.90 0.89
2 0.73 0.67
3 0.91 0.91

3 1 0.68 0.28
4 1 0.75 0.72
5 1 0.86 0.81

not explicitly model HRV. But it is not desirable to control

HRV to zero, as a very low HRV can indicate a cardiac dis-

ease and down-regulation of HRV might become dangerous

for the subject. Seeing the heart rate variability as noise, the

controller can only perform well, when the intervention, i.e.

the treadmill acceleration, causes an increase of heart rate

that is clearly above the HRV. We only performed tests with

healthy, well trained subjects, some of which showed little

increase in HR for a treadmill speed up to 3.2km/h. The

subjects with the worst r2 results were also the ones that

showed the smallest reaction to our intervention.

The model identification process suggests adaptive control,

which could identify the model parameters online. However,

heart rate is not only influenced by physical effort, but also by

psychological events such as frightening, stressful or relaxing

external stimuli. As these stimuli potentially elicit increases

in heart rate due to stress, we decided to not use adaptive

control, as we do not want our model to learn these quickly

changing psychological responses.

We are currently working on implementing model pre-

dictive heart rate control of healthy subjects, necessitating

performed validation of our model with data from spinal

cord injury and stroke patients. In these patients, the mech-

anisms that control the heart rate, like the baroreflex or

vaso-dihilation, might be imparied as response to physical

effort. On the other hand, we expect a much larger increase

in heart rate in patients caused by a treadmill speed of

3.2km/h, which would increase SNR and thereby increase

the performance a model based controller.
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