
Discrimination of endocardial electrogram disorganization using a

signal regularity analysis
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Abstract— Measures from the theory of nonlinear dynam-
ics were applied on complex fractionated atrial electrograms
(CFAEs) in order to characterize their physiological dynamic
behavior. The results were obtained considering 113 short term
atrial electrograms (A-EGMs) which were annotated by three
experts into four classes of fractionation according to A-EGMs
signal regularity. The following measures were applied on A-
EGM signals: General Correlation Dimension, Approximate
Entropy, Detrended Fluctuation Analysis, Lempel-Ziv Com-
plexity, and Katz-Sevcik, Variance and Box Counting Fractal
Dimension. Assessment of disorganization was evaluated by a
Kruskal Wallis statistical test. Except Detrended Fluctuation
Analysis and Variance Fractal Dimension, the CFAE disorgani-
zation was found statistically significant even for low significant
level α = 0.001. Moreover, the increasing complexity of A-EGM
signals was reflected by higher values of General Correlation
Dimension of order 1 and Approximate Entropy.

I. INTRODUCTION

Endocardial sites generating complex fractionated atrial

electrograms (CFAEs) have been reported as ablative targets

for the treatment of atrial fibrillation (AF) [1]. In order

to identify those sites, a great effort has been made to

describe patterns of activation in AF [2] and to quantify

general characteristics of CFAEs either in time- or frequency-

domain [3]. However, the process of a CFAE identification

is highly dependent on the operator’s judgment. Moreover,

it is not clear if CFAE are a random process of a local atrial

electrogram disorganization or a reproducible physiological

effect [4]. This study is aimed at applying a signal regularity

analysis for the description of spatio-temporal changes of

the A-EGMs fractionation levels. This analysis enables to

investigate A-EGMs nonlinear dynamics and confirm the

hypothesis that high degrees of A-EGMs fractionation are

also reflected by higher values of the regularity measures.

II. METHODOLOGY

A. Experimental Data Set

Atrial bipolar electrograms were collected during left-

atrial endocardial mapping using 4-mm irrigated-tip abla-

tion catheter (NaviStar, Biosense-Webster) in 12 patients (9

males, aged 56 ± 8 years) with persistent AF. Sampling

frequency was 977Hz. 113 of the A-EGMs were manually

selected and cropped by an expert. For the purposes of

the study (see Fig. 1), four Classes of Fractionation (CF)
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were set. The dataset ranking, which was done by three

independent experts, resulted in a total of 339 rankings

(113*3 = 339). The three independent experts never dis-

agreed in their ranking by more than one neighboring CF.

Therefore, the most prevailing pattern was chosen as a final

score. The four CFs enabled to get a uniform dataset of A-

EGMs with a significant number of samples in each class

(class1 : C1 = 22, class2 : C2 = 42, class3 : C3 = 36,

class4 : C4 = 13), so that such dataset could be used in a

regularity analysis [5],[6].
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Fig. 1. Epochs of four complex fractionated atrial electrograms. These
are representatives of each CF used in the study. From top to bottom: i)
class1: Organized activity, ii) class2: Mild degree of fractionation. iii)
class3: Intermediate degree of fractionation. iv) class4: High degree of
fractionation.

B. Regularity Signal Measures

Before attempting to calculate the fractal dimension for

endocardial electrograms, it is important to establish evi-

dence that these waveforms may be characterized as fractals.

Fractal dimension values are related to the regularity of a

pattern, or the quantity of information embedded in a pattern

in terms of morphology, entropy, spectra or variance [7].

Considering morphological properties of A-EGMs, it appears

that these signals possess valid fractal dimension values,

mainly because of two reasons. First, the signals do not self-

cross. By looking at any one of A-EGMs waveforms in Fig.1,

it is apparent that in order to scale it, a different scaling factor

is required for each axis. This indicates that the A-EGM

waveform is self-affine. Second, the signals exhibit clear

quasi-periodicity because they emerge from natural repetitive

processes (heart beats specifically). In the next subsections,

we will describe the signal regularity measures used in this

study.
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C. General Correlation Dimension

1) Parameter Selection and Signal Embedding: Only a

time series of one variable was used as an input, but this

time-series data was used to reconstruct a multidimensional

embedding space [7]. It is necessary to determine the follow-

ing three parameters i) time delay between sampled values, ii)

time interval between successive vectors and iii) embedding

dimension.

The time delay between sampled values was estimated

using the auto mutual information. The first minimum of

the auto mutual information was preferred value for attractor

reconstruction from time series [7].

The time interval between successive vectors was set to

be equal to the sampling time. In this case the number of

vectors was equal to the number of samples in the time series

minus the embedding dimension [7].
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Fig. 2. Auto-mutual information and Cao’s method functions E1(d) and
E2(d) for a signal in class1. The first minimum of the auto mutual function
appears at time delay τ = 15. regarding embedding dimension, the optimal
value is found in two dimensional space.

To determine the optimal embedding dimension from the

time series the reliable and commonly used Cao’s method

was used [8]. We used two measures: E1(d) which is the

average measure of a ratio of the Euclidian distance between

the reconstructed vector and its nearest neighbor and E2(d)
which is useful to distinguish deterministic signals from

stochastic signals. We were looking for the first minimum

either in E1(d) or E2(d) as shown in Fig.2. In practical

computations, it was difficult to resolve whether the E1(d)
was slowly increasing or had stopped changing if d was suf-

ficiently large. Therefore, the E2(d) quantity was considered

[8].

2) Correlation Dimension: The correlation dimension is

computed most efficiently by the correlation sum:

C(d, r) =
1

Npairs

N
∑

i=d

∑

j<i−w

Θ(r − (yi − yj)) (1)

where yi are m-dimensional delay vectors. Npairs = (N−
d − w)(N − d − w + 1)/2 is the number of pairs of points

covered by the sums. Θ is the Heaviside step function: Θ(x)

is zero for x < 0 and one for x ≥ 0. The summation counts

the number of pairs (yi, yj) for which the distance |yi−yj | is

less than r. All pairs of points in (3) whose time indices differ

by less than w were ignored in order to exclude temporally

correlated points. The fractal dimension of order 2,D2, is

than defined as:

D2 = lim
r→0

log C(r)

log r
(2)

3) General Correlation Dimension: GCD are a class of

metrics to characterize the fractality [7]. It is based on

counting the number of points in a box. Let Bi denote the ith
box, and let Pi = µ(Bi)/µ(A) be the normalized measure

of this box, where A is the fractal whose dimension has to

be computed and µ is the population mean of a set. In other

words, Pi is the probability for a randomly chosen point

on the attractor to be in Bi, and it is usually estimated by

counting the number of points that are in the ith box and

dividing by the total number of points. If the attractor had

been embedded in dimension d, hypercubes of dimension d
would be used. The generalized dimension is defined by:

GCDq =
1

q − 1
lim
r→0

log
∑

i P q
i

log r
(3)

D. Approximate Entropy

ApEn is a statistic measure that quantifies the unpre-

dictability of fluctuations in a time series such as an in-

stantaneous heart rate time series [9]. Informally, given N
points, the family of statistics ApEn(m, r,N) is approxi-

mately equal to the negative average natural logarithm of the

conditional probability that two sequences that are similar for

m points remain similar, that is, within a tolerance r, at the

next point. Thus, a low value of ApEn reflects a high degree

of regularity.

E. Detrended Fluctuation Analysis

DFA quantifies the presence or absence of long-range

correlations. This technique is a modification of root-mean-

square analysis of random walks applied to nonstationary

data. Briefly, the time series to be analyzed (with N samples)

is first integrated [9]. Next, the integrated time series is

divided into boxes of equal length, n. In each box of length

n, a least squares line is fit to the data (representing the trend

in that box). The y coordinate of the straight line segments

is denoted by yn(k). Next, the integrated time series, y(k)
is detrended by subtracting the local trend, yn(k), in each

box. The root-mean-square fluctuation of this integrated and

detrended time series is calculated.

F. Lempel-Ziv Complexity

LZC and its variants have been used widely to identify

nonrandom patterns in biomedical signals obtained across

distinct physiological states [10]. In general, LZ complexity

measures the rate of generation of new patterns along a

sequence and in the case of ergodic processes is closely

related to the entropy rate of the source.
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G. Katz-Sevcik Fractal Dimension

The Katz-Sevcik algorithm for obtaining a fractal dimen-

sion is largely based on morphology, and is calculated as

[11] KFD = log
10

n/log
10

n + log10
g

L
where n is the

number of increments between samples of the signal over

which KFD is calculated; L is the sum of all the distances

between successive increments; and g is the value of the

maximum distance measured from the beginning of the first

increment. It has to be pointed out that before calculating

KFD, normalization along the y- and x-axes of the signal is

performed.

H. Variance Fractal Dimension

The VFD is determined by the Hurst exponent, H , whose

calculation was derived from the properties of fractional

Brownian motion [12]. This calculation is based on the

power law relationship between the variance of the amplitude

increments of a signal, C(t), which was produced by a

dynamical process over a time increment △t =| t2 − t1 |,
with C(t2) − C(t1) denoted as △C. The power law is as

follows: V ar[△C] ∼ △t2H where the Hurst exponent is:

H = lim
△t→0

( log
2
V ar[△C]

log
2
△t

)

(4)

The VFD for a process with embedding Euclidean dimen-

sion, E (equal to 1 for A-EGMs signal), is determined by:

V DF = E + 1 − H .

I. Box Counting method

An established approach to compute the fractal dimension

of a set is the box-counting method (BFD) [13]. In detail,

for a set of N points in Rd, and a partition of the space

in grid cells of length l, the fractal dimension DB can be

derived from:

BFD = − lim
l→0

log
10

N(l)

log
10

(l)
(5)

where N(l) represents the number of cells occupied by at

least one point.

J. Statistical Evaluation

Non-parametric Kruskal Wallis test was applied for reg-

ularity measures comparison. The test was used in order to

cope with a smaller number of A-EMG signals, specially in

class 4, where 13 signals are only available.

III. RESULTS AND DISCUSSION

The reliability of the A-EGM fractionation assessment

using regularity measures is summarized in Table I. Mean

and standard deviation values are reported for each class.

The optimum parameter setting for ApEn, DFA and BFD

was found by a trial and error method for 10 runs of the

experiment. In case of ApEn, tolerance parameter r was

increased by 0.05 while keeping pattern length m fixed.

Considering DFA, parameters for defining the slope of two

DFA curves were increased by 4 in each run. Finally, BFD

TABLE I

COMPARISON OF A-EGM FRACTIONATION

Method C1 C2 C3 C4 Kruskal

GCD
−6

0.034 0.061 0.078 0.13 3.2e-7
0.029 0.049 0.079 0.078

GCD
−5

0.057 0.071 0.11 0.17 4.9e-6
0.021 0.065 0.099 0.076

GCD1

1.22 1.50 1.80 2.16 8.4e-11
0.27 0.41 0.30 0.13

ApEn 0.28 0.46 0.57 0.71 6.9e-13
0.088 0.096 0.070 0.050

DFA
1.24 1.31 1.41 1.41 1.8e-3
0.26 0.22 0.16 0.15

LZC
0.37 0.47 0.51 0.60 9.1e-13
0.040 0.061 0.071 0.054

KFD
1.36 1.38 1.38 1.41 2.4e-8
0.020 0.021 0.028 0.020

VFD
1.78 1.67 1.64 1.65 0.1e-3
0.17 0.17 0.14 0.13

BFD
1.43 1.47 1.50 1.54 1.5e-9
0.040 0.036 0.042 0.038

dimension dimBFD was incremented by 1 in each run.

The final parameters that resulted in minimum p-values

across 10 runs were following: GCD: embedding dimension-

variable for each signal, Cao’s method was applied, time

delay: variable for each signal, auto-mutual information was

applied; ApEn: tolerance r = 0.1, pattern length m = 2;

DFA: fast = 2,mid = 32, slow = 64; BFD: dimension

dimBFD = 5; LZC: binary coding was used.
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Fig. 3. The average generalized dimension spectrum for all classes of
A-EGM fractionation.

Fig.3 shows the average generalized dimension spectrum.

The spectrum should be convex, monotonically increasing

[7]. The differences among classes are more apparent from

general dimension q ≥ −2. Especially, GCD values of class3

are bigger than values of class4 for generalized dimension

q = −4. GCD measure reaches peak at q = 2 indicating

that higher embedding dimensions q > 2 do not provide

a reliable measure of discrimination due to the appearance

of numerical errors in higher dimensional space. The GCD

values for q = −6,−5, 2 were reported in Table I in order to

point out the importance of using higher negative correlation

dimensions.
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Our assumption about fractal nature of A-EGM signals

is confirmed by very low p-values in Table I. Even if

significance level is set to α = 1e − 3, most fractal

dimensions are statistically significant in differentiating A-

EGM classes disorganization. The exception are DFA and

VFD measures. Furthermore, LZC,VFD and BFD measures

have lower discrimination capability compared to GCD1

and ApEn measures as can be seen in Table I. The main

reason is data insufficiency; A-EGMs are very short segments

of 1.5s duration sampled with 977Hz which accounts for

1537 values. First, ApEn is able to work properly if input

dataset contains at least 1000 samples [9]. Second, the good

discrimination was mainly achieved by careful selection of

algorithm parameters, especially in case of the GCD measure

where auto-mutual infirmation and Cao’s approach were

applied.
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Fig. 4. Assessment of A-EGM fractionation using Correlation Dimension
and Approximate Entropy. Horizontal line represents mean value for each
class.

We compared two best performing dimensions according

to the results of the statistical tests: General Correlation

Dimension of order 1 and Approximate Entropy - see bold

values in Table I. Fractal dimensions were calculated for all

A-EGM signals in the dataset. General correlation dimension

of order 1 is shown in upper part of Fig. 4. The first and

the last classes are well separated by GCD1 values. Note

that intermediate classes 2 and 3 partially overlap. In case

of ApEn, the separation of the 2nd and 3th class is slightly

better compared to GCD1 dimension as can be seen in lower

part of Fig. 4.

IV. CONCLUSIONS

In the era of catheter ablation of AF, the initial attempts

to describe A-EGMs during AF were predominantly based

on frequency-domain analysis of atrial signals [3]. Not only

dominant frequency (DF) but also the level of A-EGMs

fractionation may be a clinically important descriptor of

local atrial signal [1]. Sites with highly fractionated A-EGMs

almost fully encompass the sites with high DF whereas the

opposite is not always true. Therefore it is very important

to develop other measures which could assess A-EGMs reg-

ularity, especially differentiating low A-EGMs fractionation

(LF) from high fractionation (HF).

This study revealed the presence of nonlinear dynamics

in A-EGM across all selected fractionation levels. Fig. 4

documents the fact that with increasing complexity of A-

EGM’s signals the value of regularity measures increases too.

Across all levels of A-EGM fractionation, the discrimination

using regularity measures was found statistical significant

at significance level α = 0.001. The proposed complex

measures were successful in separating class C1(LF) from

class C4 (HF) of the A-EGM signals. However, separation

between intermediate classes 2 and 3 was not so clear. One of

the reasons is that the classes were defined by averaging the

classification by 3 experts to obtain semi-continuous scale

of fractionation. In some cases it was very difficult to assign

A-EGM signals either to class 2 or class 3.

Regarding future studies, the selected complex measures

(GCD1 and ApEn) can be used as additional features for

automated and operator independent system that facilitates

AF substrate ablation [5].
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