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Abstract— We propose a novel algorithm for extracting
atrial activity from single lead electrocardiogram (ECG) signal
sustained with atrial fibrillation (AF), based on a short-time
expansion of an orthogonal basis function set. The method
preserves the time variation of spectral content of the un-
derlying AF signal, thus time-frequency analysis of the AF
signal can be successfully performed. The new method is
compared to the standard average beat subtraction (ABS)
method using synthetic AF sustained ECG data. The orthogonal
basis expansion method has a higher correlation with the
original AF signal compared to the ABS method for a range of
signal to noise ratio (SNR) levels, and correlation is improved
by 16% at an SNR of 0dB. Time-frequency analysis of the
reconstructed AF signal based on Bessel distribution also shows
the superiority of the orthogonal basis expansion method over
ABS.

I. INTRODUCTION

AF is the most common sustained cardiac arrhythmia,

increasing in prevalence with age, accounting for approx-

imately one third of hospitalizations for cardiac rhythm

disturbances [1]. AF is characterized by the replacement

of consistent P-waves on the ECG by rapid oscillations

(fibrillatory waves) that vary in amplitude, frequency, and

shape, associated with an irregular ventricular response. AF

affects approximately 10% of the population over age of 75

and is associated with an increased risk of stroke [1], [2].

ECG can be used as a noninvasive way of analyzing AF for

characterizing paroxysmal and persistent AF conditions, and

monitoring the response to cardioversion or drug induced

treatment methods, with inherit advantages of being low

cost, minimal risk, and ability to record for long period

of times via Holter monitors [3], [4]. Analysis of AF and

other supraventricular tachyarrhythmia conditions require

cancelation of the ventricular activity (QRS complex and

T-wave) from the ECG. Due to the overlapping spectral

contents of atrial and ventricular activities, linear filtering

is not possible, and also the higher dominance of ventricular

activity in the ECG makes the extraction of atrial activity

non-trivial [5], [6].

Two types of methods have been used in the literature for

extracting atrial activity from the ECG. First type of methods,

known as average beat subtraction (ABS) methods, work by

estimating an average morphology of QRS complex and T-

wave, and subtracting the average template from individual
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QRS-T wave with possible temporal and spatial alignment

and scaling. ABS methods can be used with both single-lead

and multi-lead ECG, but work on the assumptions that time

invariance of wave morphology, and short-time stationarity

of the signal. These assumptions often break in the presence

of ectopic beats, and movement of electrodes, thus significant

amount of residual QRS-T can be present in the extracted

atrial signal [7]. The performance could be further limited for

signals with short durations, as constructing a good QRS-T

template becomes difficult [8].

Second type of methods, known as blind source separation

methods, explore the spatial diversity of multi-lead ECG,

and rely on the assumptions linear mixing of uncoupled

atrial and ventricular activities. Techniques such as indepen-

dent component analysis, and principal component analysis

were employed with non-Gaussianity criteria is used for

the separation of atrial and ventricular sources [6], [9].

Even though these methods estimate a global atrial activity

using multiple leads, the performance significantly reduces

for fewer number of leads. Especially for Holter recordings

where only few electrodes are available, performance of the

source separation techniques are not satisfactory [10].

Following the extraction of atrial activity, the spectral anal-

ysis or the time-frequency analysis is performed to identify

the dominant AF frequency and its time variation [3], [5]. But

both the above described methods do not take into account

preserving the spectral content of the underlying AF signal

during the process of atrial activity extraction. In this paper,

we propose a novel method for reconstructing the atrial

activity from AF sustained ECG by mode limited short-time

expansion of an orthogonal basis function set. Atrial activity

during the QRS-T duration was estimated by interpolating

immediately preceding and following segments of AF signal.

The method preserves the morphology and frequency content

of the underlying AF signal, and is free from any QRS-T

residues. The proposed algorithm is described in Section II,

and performance evaluation of the new algorithm is given in

Section III in terms of correlation at different SNR levels, and

by construction of time-frequency plots. A comparison is also

done between the proposed method and the ABS method.

II. METHOD

A. Orthogonal Basis based AF Reconstruction

Let s(t) be a single lead AF sustained ECG signal. A

typical segment of s(t) is shown in Figure 1. Timings of

starting point of QRS complex, and end point of T-wave of

ith beat were named Qi, and Pi+1 respectively. AF signal

is clearly visible in the intervals (Pi, Qi), and (Pi+1, Qi+1),
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but is corrupted by the ventricular activity in the interval

(Qi, Pi+1). In the following algorithm we use the known

segments of the AF signal in (Pi, Qi) and (Pi+1, Qi+1) to

estimate the ventricular corrupted segment in (Qi, Pi+1) by

modeling the AF signal as a short-time weighted sum of

orthogonal basis function set.
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Fig. 1: A typical AF sustained ECG segment with nomen-

clature used in this paper.

Let fi(t) be the underlying AF signal over the interval

(Pi, Qi+1). We represent fi(t) by a set of orthogonal basis

functions {φn(t)}. Due to the frequency modulated harmonic

nature of the AF signal, the natural choice for the basis set

was considered to be the complex exponential functions,

φn(t) = ej2πnt/T , (1)

where T = Qi+1 −Pi. Assuming that fi(t) is mode limited

to N with respect to {φn(t)},

fi(t) =

N
∑

n=−N

a(n,i)φn(t) Pi ≤ t ≤ Qi+1, (2)

where {a(n,i)} are the localized coefficients of basis func-

tions. The limited number of modes which captures the

underline AF signal will preserve the spectral content of the

signal, and improve the noise robustness. By using (Pi, Qi)
and (Pi+1, Qi+1) intervals of s(t) to estimate {a(n,i)}, we

get
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which is written in short

s = Φa. (4)

If (Qi − Pi) + (Qi+1 − Pi+1) > 2N + 1, then the system

in (4) is over-determined, and usually this will be the case

provided the ECG signal is sufficiently sampled. In other

case, the system in (4) is under-determined. In either case,

regularization can be used to overcome the problems associ-

ated with the over-determined or under-determined system.

Regularization avoids modeling of the noise, thus effectively

acts as a noise filter. It also guarantees a bounded solution,

thus any remaining QRS-T residues will be suppressed.

Tikhonov regularization [11] was applied in solving (4), and

the solution can be written in the form

â = (ΦT Φ + λ2I)−1ΦT s, (5)

where I is the identity matrix, λ is the regularization param-

eter, and T stands for the transpose of the matrix. Once a

is estimated, the underlying AF signal during the ith beat,

fi(t) can be obtained by

f̂i(t) =














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





s(t) Pi ≤ t ≤ Qi

∑N
n=−N â(n,i)φn(t) Qi < t < Pi+1

s(t) Pi+1 ≤ t ≤ Qi+1.
(6)

Known AF segments are replaced by the original ECG,

and ventricular corrupted segment is estimated by the basis

function set. The whole AF signal f(t) can be reconstructed

by iterating the above process for each single beat.

B. Time-Frequency Analysis

Once the AF signal is estimated, time-frequency analysis

was performed in order to identify the dominant AF fre-

quency, and its time variation. Bessel kernel based time-

frequency distribution [12] has shown a good frequency

resolution, and error robustness in analyzing AF signals [13],

and is given by

B(t, ω;φ) =
1

2π

∫∫∫

ejξµ−jτω−jξtφ(ξ, τ)

×f
(

µ +
τ

2

)

f∗

(

µ −
τ

2

)

dξdµdτ, (7)

where f(µ) is the AF signal to be analyzed, t and ω are

time and frequency respectively, and τ and ξ are time lag

and frequency lag respectively. Limits of each integral is

from −∞ to ∞. The kernel function φ(ξ, τ) for the Bessel

distribution is given by

φ(ξ, τ) =
J1(2παξτ)

παξτ
, (8)

where J1(·) is the Bessel function of first kind of order one,

and α > 0 is a scaling factor.

III. RESULTS

A. Synthetic AF sustained ECG

The algorithm was applied to synthetic ECG signals gener-

ated from a dynamical model of motion [14] which was then

modified by removing the P-waves, and adding simulated

AF signal. Figure 2(a) shows the simulated ECG for normal

sinus rhythm, and Figure 2(b) shows the AF sustained ECG.
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The AF signal was mathematically modeled by a sum of

frequency modulated sinusoidals with time varying ampli-

tude and its harmonics [7] and is given by

g(t) =

M+1
∑

k=1

ak(t) cos[kω0t +
∆ω

ωf
sin(ωf t)], (9)

where ak(t) = e−γ(k−1)(a + ∆a sin(ωat)), ω0 is the fun-

damental AF frequency, ωf is the frequency of frequency

modulation, ∆ω is the maximum frequency deviation, M is

the number of harmonics excluding the fundamental, γ is

the decaying factor of harmonics, a is the average ampli-

tude of the fundamental, ωa is the frequency of amplitude

modulation, and ∆a is the maximum amplitude deviation.

According to the model, AF frequency is given by

ωAF (t) = ω0 + ∆ω cos(ωf t). (10)

A segment of simulated AF signal is shown in Figure 3(a) for

ω0 = 2π6rad/s, ωf = 2π0.04rad/s, ∆ω = 2π2rad/s, M = 3,

γ = 1, a = 0.02mV, ωa = 2π0.08rad/s, ∆a = 0.005mV.
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Fig. 2: (a) Synthetic ECG for normal sinus rhythm [14],

(b) P-wave was removed from normal sinus rhythm and AF

signal (9) was superimposed, (c) Fiducial points Pi and Qi

were accurately identified.

B. Data Processing

Once AF sustained ECG was generated, baseline wander

was removed by passing through a high-pass filter with

0.5Hz cut off frequency. Then, R-peaks were detected us-

ing Hilbert transform based peak detection technique [15].

Following R-peak detection, fiducial points Pi and Qi were

identified by Pi = Ri−1 + 0.5RR, and Qi = Ri − 0.1RR,

where RR is the mean RR interval. Accurate identification

of fiducial points Pi and Qi is shown in Figure 2(c).

Following identification of fiducial points, orthogonal ba-

sis expansion based algorithm described in Section II was

applied to reconstruct the AF signal from the ECG. Number

of modes N = 16, and regularization parameter λ = 1.8
were used to maximize the correlation with the original AF

signal. ABS method was also applied to the same ECG data

in order to compare the performance of the proposed method.

ABS method involved constructing a mean QRS-T template,

and subtracting the QRS-T template from individual beat

after temporal alignment and scaling with each R-peak.

Figure 3 shows the simulated AF from the model (9), and

reconstructed AF signals using orthogonal basis expansion

method, and ABS method. QRS-T residues are apparent in

ABS method at times t = 6, 7, 8s, where as orthogonal

basis expansion method has successfully suppressed all the

ventricular activity.
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Fig. 3: (a) Simulated AF signal (9), (b) AF signal recon-

structed using orthogonal basis expansion, (c) AF signal

reconstructed using average beat subtraction.

C. Performance Evaluation

Correlation coefficient was used to evaluate the perfor-

mance of the proposed method, and is given by

CC =

[

∫

∞

−∞
f(τ)g∗(τ − t)dτ

]2

[

∫

∞

−∞
f(τ)f∗(τ − t)dτ

] [

∫

∞

−∞
g(τ)g∗(τ − t)dτ

] ,

(11)

where g(t) is the simulated AF signal, and f(t) is the

reconstructed AF signal using a particular method. Figure

4 shows the correlation coefficients for orthogonal basis

expansion method and ABS method at t = 0, under white

Gaussian noise, for a range of SNR settings. It is clear that

proposed method outperforms ABS for all the noise settings,

and at 0dB SNR correlation was improved by 16%.

Then, time-frequency analysis was performed on recon-

structed AF signals using Bessel kernel based time-frequency

distribution (7), with α = 0.5 used to minimize interference

terms. Figure 5 shows the time-frequency plots for simulated

AF (9), and reconstructed AF signals from orthogonal basis

expansion, and ABS methods. It is evident that the ABS

method is vulnerable to QRS-T residues, and time-frequency
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Fig. 4: Correlation coefficients of reconstructed AF signal us-

ing orthogonal basis expansion and average beat subtraction

with respect to the simulated AF signal (9) under additive

white Gaussian noise.

plot gives discontinuities, and misleading frequencies at

points where QRS-T residues are remaining. On the other

hand, proposed orthogonal basis expansion method has a

smoother frequency trend, and more closely matches with

the original AF signal.

IV. CONCLUSIONS

A novel algorithm based on mode limited short-time

expansion of an orthogonal basis function set was proposed

for extracting the atrial activity from the ECG under AF

condition. Correlation coefficients indicate that the proposed

method outperforms the standard ABS method for a range

of SNR levels. Regularization and limited number of modes

make the proposed method less vulnerable to noise, and

preserves the spectral content of the underlying AF signal,

thus results in a better time-frequency representation. Finding

the values for optimum number of modes, and optimum reg-

ularization parameter remains an open question, and training

and cross validation based methods need to be applied in

order to find optimal values of these parameters.
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