
  

  

Abstract— In this paper, we present a fuzzy rule-based system 
for the automatic detection of seizures in the intracranial EEG 
(IEEG) recordings. A total of 302.7 hours of the IEEG with 78 
seizures, recorded from 21 patients aged between 10 and 47 
years were used for the evaluation of the system. After 
preprocessing, temporal, spectral, and complexity features 
were extracted from the segmented IEEGs. The results were 
thresholded using the statistics of a reference window and 
integrated spatio-temporally using a fuzzy rule-based decision 
making system. The system yielded a sensitivity of 98.7%, a 
false detection rate of 0.27/h, and an average detection latency 
of 11 s. The results from the automatic system correlate well 
with the visual analysis of the seizures by the expert. This 
system may serve as a good seizure detection tool for 
monitoring long-term IEEG with relatively high sensitivity and 
low false detection rate. 

I. INTRODUCTION 
pilepsy is a neurological disorder that affects 1% to 3% 
of the world population. Seizures are clinical 

manifestations of abnormal neuronal discharges of  
the brain [1]. Electroencephalography (EEG) is one of the 
most efficient tools in the diagnosis of epilepsy.  

Traditionally, the long-term EEG has to be visually 
inspected by the expert to identify seizures. This is a  
time consuming task and human errors can not be avoided. 
Over the past three decades, great progress has been made 
for automatic seizure detection in the EEG with different 
degrees of success [2]-[5]. The detection methods usually 
use some rules for integrating temporal and spatial 
information extracted from raw EEG. These rules are 
established based on the expert’s reasoning to make 
decisions for seizure detection. The rules are not strict and 
can be adapted to tolerate the interpatient variability in 
interictal and ictal activities, and to differentiate interictal 
epileptiform discharges from ictal activities. For this 
purpose, a fuzzy logic system can provide a suitable 
framework to deal with pattern recognition problems whose 
decision boundaries are fuzzy with gradual class 
membership [7]-[8]. Another advantage of the  
fuzzy rule-based systems is the ability to design an expert 
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rule-based interface between features formulated using 
linguistic information and quantitative measurements [9].  

In this paper, we present a fuzzy rule-based tool for 
detection of epileptic seizures in the IEEG. The system 
comprises three stages: 1) preprocessing including bandpass 
filtering and segmentation, 2) feature extraction, and  
3) rule-based decision-making. The following sections detail 
the stages of the system. 

II. MATERIALS AND METHOD 
We analyzed IEEG recordings from 21 patients with 

medically intractable focal epilepsy. The IEEG data used in 
this study were obtained from the Freiburg Seizure 
Prediction EEG (FSPEEG) database with authorization [10]. 
The seizure onset and offset have also been determined by 
the expert based on identification of epileptic patterns 
preceding clinical manifestation of seizures in IEEG 
recordings. In total, for all patients, 302.7 h of  
4-channel bipolar IEEG recordings containing 78 seizures 
with an average duration of 121 s (range 9-411 s) were 
analyzed.  

Our seizure detection system comprises three main stages: 
preprocessing and artifact detection, segmentation and 
feature extraction, and decision-making as shown in Fig. 1.  

Fig. 1. Block diagram of the seizure detection system. 
 
The IEEG data were bandpass filtered between 0.5 and 

100 Hz and notched to remove the 50-Hz line noise. To 
improve the detection accuracy and to minimize the false 
detection rate, we used an artifact detection algorithm. First, 
IEEG parts with constant amplitudes were marked as 
saturation artifacts. Then, the IEEG segments containing 
signal with amplitude larger than 1500 µV were considered 
as movement artifacts.  

A.  Feature Extraction 
To analyze the data, first the IEEG were segmented using 

a moving window of 2.5 s with 0.5 s overlap between 
windows.   

Then, four features, entropy, dominant frequency,
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average amplitude and coefficient of variation of 
amplitude were extracted from the IEEG segments for each 
of the bipolar channels separately [2]-[3], [6], [11].  
Entropy: Entropy, a measure of “irregularity” or 
“uncertainty”, was initially introduced by Shannon [12].  To 
compute the entropy for short and noisy time series data, in 
this paper, we used Sample Entropy (SampEn), a variant of 
the ApEn to calculate the entropy feature for each IEEG 
segment [13]. 
  
Dominant Frequency: In the spectrum of a signal, the 
dominant frequency ( Δf ) is defined as the peak with 
maximum spectral power. In this study, to find the dominant 
frequency for each IEEG segment, first the spectral 
frequency band was determined by autoregressive (AR) 
modeling. We used Akaike's information criterion (AIC) to 
determine the appropriate AR model order for a good 
approximation of the shape of the spectrum [14]. We 
considered this order to be the maximum of the orders 
estimated for seizure and non-seizure segments (20 in this 
study). The Burg method was used for extracting AR 
coefficients. Then, the spectral power of each segment was 
estimated by the AR coefficients. For every spectral peak, 
the spectral frequency band is defined in [ hl ff  ,  ] where 

lf and hf are the left- and right-side frequencies of the 
peak, with amplitudes equal to half the amplitude of the 
peak [4].  
 
Average Amplitude: To calculate this feature, every IEEG 
segment was highpass filtered above 3 Hz to remove low-
frequency activities. Then, all peaks were detected using a 
peak detection algorithm based on zero-crossings of the first 
derivative of the IEEG signal. The amplitudes of the peaks 
were computed by averaging the amplitudes of their half 
waves. Then, the average of the peak amplitudes was 
computed as the average amplitude feature (μam) [4],[11].  
 
Rhythmicity: Seizures are characterized by the rhythmicity. 
The coefficient of amplitude variation gives a measure of 
rhythmicity of the ictal signal. The coefficient of variation 
was computed as: 
                                        

μ

δ
A
Astd

cv =                                 (1) 

where Astd and Aμ are the standard deviation and mean of the 
amplitudes of the IEEG segment, respectively. 

A.  Decision Making  
A fuzzy inference system used as the intermediate 

decision-maker was designed to relate feature values and the 
least number of segments necessary to declare any 
preliminary seizure detection. The intermediate decision 
maker works on a single channel basis. For each channel, a 
sub-system produced a single output that was defuzzified 
using the fuzzy sets. This subsystem receives two input 
variables with crisp values. The first input is features (Fi) 
extracted from the segments of the IEEG bipolar channels 

and the second input is the number of consecutive segments 
exhibiting the same feature level (Ns).  

Before fuzzifying feature variables, first, they were 
normalized to the reference statistics calculated as follows. 
For each IEEG recording, a relatively long seizure-free 
reference window (300 s) was selected from the beginning 
of the IEEG recording with the same starting time for all 
bipolar channels. Then, for any given feature and channel, 
we calculated the mean μ and standard deviation σ over the 
feature values extracted from the segments within the 
reference window. The feature values for all the IEEG 
segments for the same channel were normalized as 

σ
μ−

= ik
ik

FF
)  where Fik is the value of the given feature for the 

ith segment and kth channel. The ikF
)

values were fuzzified 
using three membership functions, negative (N), zero (Z), 
positive (P) (Fig. 2a) where Tc is a threshold to be 
determined in Section C.  

For the same channel, to fuzzify the second variable of 
the subsystem, Ns, for any segment j, the number of previous 
segments exhibiting the same feature level as the current 
segment was counted. To this end, three feature levels were 
considered, (Fi > Tc), (-Tc < Fi < Tc), and  
(Fi < -Tc). Then, this value was fuzzified using two 
membership functions: low (L) and high (H), defined using 
two threshold values (Ns1 and Ns2) (Fig. 2b). Ns1 was defined 
as the minimum IEEG data length required to reject false 
spike-wave burst lasting less than 5 s. Ns2 was defined as the 
minimum expected seizure length. For each IEEG recording, 
Ns2 was determined by the method described in Section C.  

The output membership functions of the subsystem were 
defined as “INT” for interictal state, “SZP” for seizure 
pattern, and “NSP” for non-specific pattern (Fig. 2c). 
Therefore, the output level (ηL) varies in response to the 
variation of the feature level (Fi) and the number of 
segments (Ns2) exhibiting the same feature level.  

The following rules were drawn-up as the intermediate 
decision making rules. For two fuzzy variables with 3 and 2 
membership functions, four rules covered all possible input 
combinations as follows:  

If (Ns is  L) then (ηL is INT)                   
If (Fi is N) and (Ns is H) then (ηL is NSP)                             (2)                         
If (Fi is Z) and (Ns is H) then (ηL is INT) 
If (Fi is P) and (Ns is H) then (ηL is SZP) 

The output results at this stage are primary detected 
sections containing ictal or interictal activities in bipolar 
channels independently. Then, the output results of the 
intermediate decision maker were scanned segment by 
segment. For each segment, a channel counter counted the 
number of channels containing ictal activities. If more than 
two channels showed ictal activities, a multichannel seizure 
section was declared [15]. This step was repeated for each 
feature independently. 

The results of decisions made for seizure detection using 
all the features were then integrated by a simple rule to make 
the final decision about seizure detections. For any segment, 
if at least NF (out of 4) features confirmed a pattern, seizure 
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or non-seizure, the segment was labeled as that pattern.  NF 
was determined using the method described in Section C. 

 
 
 
 

 

 

 

 

 

 

 

 
 

 

 

 

 

 
 
 
 
 
 
Fig. 2. Membership functions used to define input fuzzy variables (a) 
feature, and (b) number of consecutive segments. (c) Output membership 
functions.  μF, μN , and μo are degrees of membership for input and output 
variables. σs, Ns, and ηL are feature level, number of segments and output 
level, respectively.  

 

In the postprocessing stage, short-length detections lasting 
less than 5 s and artifact-contaminated segments were 
rejected. Then, to unify detected seizure parts, a minimum 
time interval was allowed between two different seizure 
detections [16]. The minimum time interval value was 
adjusted in a way to achieve the best system performance 
(30 s in this paper).  

B.  Threshold Estimation 
Because the interictal activities were different from patient 

to patient, to estimate Tc, Ns2 and NF, a two-layer back-
propagation neural network (BNN) was trained [17]. The 
BNN consisted of an input layer with 5 nodes (5 reference 
statistics), one hidden layer with 50 and an output layer with 
3 nodes (three threshold parameters). The five reference 
statistics were the average of the standard deviations of the 
raw data over the bipolar channels within the reference 
window and the corresponding average standard deviations 
for the four features used in this paper.  

To train the network, 40% of the IEEG recordings from all 
patients were used. For any IEEG recording, the threshold 
parameters were determined by the trial-and-error method in 
a way to simultaneously maximize the detection sensitivity 

and selectivity of the system for discriminating ictal from 
non-ictal activities. Using this approach, we found that the 
ranges of variation for Tc, Ns2 and NF were Tc ≥ 0.5 (with an 
increment of 0.1), 8 ≤ Ns2 ≤ 10 (with an increment of 1), and 
2 ≤ NF ≤ 4 (with an increment of 1).  At each run, five 
reference statistics as explained above were computed. 
Finally, for each IEEG recording a pair of input-output 
vectors was provided. The reference statistics were the 
elements of the input vector and the optimal threshold 
parameters were the elements of the output vector. 
Proceeding in the same manner, a training matrix including 
the input and output vectors was constructed from the 
training IEEG recordings.  

Once the training matrix was provided, the fast supervised 
back-propagation training algorithm provided in MATLAB 
[18] was used for training the BNN. The weights were 
initially set to small random values in the range [-0.5, 0.5]. 
The learning rate and the momentum were set at 0.1 and 0.8, 
respectively. The network was trained 10000 epochs. Once 
the training was carried out, the network was used to 
estimate the thresholds for all the IEEG recordings analyzed 
in this study.   

C.  System Evaluation 
Based on non-seizure/seizure labels assigned to IEEG 

segments at the output of the intermediate decision maker, 
the performance of the system was assessed in terms of the 
sensitivity and selectivity [15]. All measures were computed 
in percent.  

As the system was designed for clinical use, three 
performance measures, sensitivity, false detection rate, and 
detection latency were also calculated [5], [15], [19]. To 
measure the sensitivity and the false detection rate, the start 
and end time of all automated seizure detections were 
compared with those marked by the expert for the analyzed 
seizures. Any seizure detection that overlapped with the start 
and end time of a seizure was defined as a true seizure 
detection. All other detections were defined as false 
detections. The detection latency is defined as the time lag 
associated with a seizure detection. The average detection 
latency was computed by averaging the time lags between 
the seizure onsets marked by the expert and the system over 
all the analyzed seizures. 

III. RESULTS  
Table I shows the results of the seizure detection and false 

detection rate per patient. As shown, 77 (of 78) seizures 
were detected correctly. This gives a sensitivity of 98.7%.  

The average false detection rate of 0.81/h was obtained 
before post-processing. After rejecting false detections 
including artifacts as well as short-length detections, the 
false detection rate was reduced to 0.27/h. Rejecting  
short-length detections reduced the false detection rate by 
62.3%. In addition, 4.5% improvement in false detection 
rate was achieved after rejecting artifacts. The average 
detection latency was 11 s from the electrographic onset of 
the seizure with a standard deviation of 6 s. The only missed 
seizure had a short length less than 10 s. 
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TABLE I 
NUMBER OF SEIZURES AND FALSE DETECTION RATE PER PATIENT. 

Patient 
Number of 

expert-detected 
seizures 

Number of 
system-detected 

seizure 

False 
detection/h 

1 3 3 1.5 
2 3 3 0 
3 5 5 0 
4 5 5 0 
5 5 5 0 
6 3 3 0.08 
7 3 3 0.08 
8 1 1 0.42 
9 5 5 0.13 

10 5 5 0.06 
11 2 2 0 
12 4 4 0.15 
13 2 2 0.1 
14 4 4 0.21 
15 3 3 0.58 
16 5 5 0.3 
17 5 5 0.1 
18 3 2 1.21 
19 2 2 0.07 
20 5 5 0.21 
21 5 5 0.49 

Total 78 77 0.27 
 

IV. DISCUSSIONS 
Our system makes considerable use of spatial and 

temporal information to detect seizures of different types. A 
sensitivity of 98.7% and a false detection rate of 0.27/h  
(one false detection every 3.7 hours) were obtained using 
the system. Table 2 compares the performance of different 
seizure detection tools in the reviewed literature. 

 
TABLE II 

COMPARISON BETWEEN THE ACCURACY OF DIFFERENT SEIZURE DETECTION 
TOOLS IN THE REVIEWED LITERATURE. 

 
Author(s) 

 
Year Sesitivity 

% 

False 
detection 

(/h) 

Average 
detection latency 

(second) 
Gotman 1982 75.8 1.35 - 

Murro et al. 1991 90-100 1.5-2.5 - 
Qu et al. 1995 100 0.37 9.35 

Grewal  et al. 2005 89.4 0.22 17.1 
Gardner et al. 2006 97.1 1.56 -7.58 
Our system 2009 98.7 0.27 11 
 
Our future work will focus on the application of the 

system on the IEEG and surface EEG recordings with more 
channels as well as designing a dynamic threshold estimator. 
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