
  

  

Abstract— Different types of analyses of scalp and intracranial 
electroencephalography (EEG) recordings using linear and 
nonlinear time series analysis method have been done. They 
showed strong evidence of detectable changes in the EEG 
dynamics from minutes up to several hours in advance of 
seizure onset. The predictive performance of univariate and 
bivariate measures, comprising both linear and non-linear 
approaches have been carried in different studies Direct 
comparison among different measures and methods in seizure 
prediction is not possible, unless they are applied to the same 
dataset. In this review paper, we describe different seizure 
prediction measures briefly and discuss the existing challenges. 

II. INTRODUCTION 
pilepsy, as one of the most common neurological 
disorders, affects more than approximately 1% of the 

world’s population [1]. This disorder is characterized by 
episodic interruptions of cerebral electrical activities caused 
by abnormal spatio-temporal hypersynchronous discharges 
of neuronal populations referred to as seizures [2]. 
Nowadays 75% of epilepsy patients are controlled by 
antiepileptic drugs [1]. Any systems to predict in advance 
the occurrence of seizures can improve the therapeutic 
treatments. On the other hand, these systems improve the 
quality of epilepsy life by helping them to adjust their 
preventive behavior [3].  

Electroencephalography (EEG), as one of the most 
efficient tools in the diagnosis of epilepsy, provides 
information about spatio-temporal patterns of brain electrical 
activity. Diagnostic evaluations of EEG recordings of 
patients are necessary to study the spatio-temporal dynamics 
of the EEG signal for better understanding the process 
leading to the seizure generation. This can provide deep 
insights into possible mechanisms for seizure control.  

Two different scenarios have been proposed for the 
interictal-to-ictal transition [4], a sudden and abrupt 
transition as happened for generalized epilepsy, or a gradual 
change between interictal and ictal periods. Based on the 
second scenario, in which the ictal state would be preceded 
by detectable dynamical changes in the EEG, many studies 
have found that seizures follow a dynamical transition that 
evolves over minutes to hours [5]-[12]. In this paper, we will 
briefly review different measures that haven been used for 
seizure prediction. 
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III. METHODS 
This section contains a brief overview of measures 

commonly used to characterize EEG time series. In this 
review, we are interested in the practical aspects of the 
available seizure prediction methods and put less weight on 
the theoretical concepts behind the algorithms.   
A. Univariate Measures 

EEG analysis using univariate measures involves 
characterizing the state of EEG time series related to only a 
single recording site. Time series of EEG contain activities 
with different amplitudes and frequencies. Linear univariate 
measures are used to characterize the EEG based on the 
amplitude and phase (/frequency) information.  

When one needs to characterize the state and dynamics of 
dynamical systems, then, nonlinear univariate measures, 
derived from nonlinear dynamics called ‘chaos theory’, have 
to be used. To this end, it is necessary first to define two key 
terms: “state” and “dynamics”. The state describes the 
system at a given moment in time. The system state is 
described by a point in an m-dimensional space called the 
state (/phase) space where m is the embedding dimension. 
The system dynamics is the rules that describe how the 
system state evolves over time [11].  

1)  Linear measures 
Linear methods, such as energy, and the spectral power 

require the staionarity of the time series. In this section, we 
review the most prominent linear tools used for seizure 
prediction. 

a) Statistical moments: Statistical moments provide 
information on the amplitude distribution of a time 
series. The first (mean) and second (variance) statistical 
moments provide information on the location and 
variability of the amplitude distribution of the time 
series. The third (skewness) and fourth (kurtosis) 
moments also provide information on the shape of the 
distribution [12]. The ability of these measures to 
distinguish between the interictal period and the pre-
seizure period in the IEEG data have been compared 
[13]. Using variance and kurtosis, a preictal period was 
found with significant changes (a decrease for variance 
and an increase for kurtosis) in comparison with the 
interictal period. Other attempts to extract seizure 
precursors from the EEG were carried out for seizure 
prediction using spectral analysis [14]-[15]. 

b) Power spectral parameters: The EEG signal has usually 
been described in terms of main frequency bands, δ (less 
than 4 Hz), θ (4-8 Hz), α (8-12 Hz), β (13-30 Hz), and  
γ (greater than 30 Hz). Relative power in any frequency 
band is defined as the area under the curve of the power 
spectrum within the bandwidth under consideration 
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divided by total power for all bands. Mormann et al. [13] 
have shown that for the preictal period in comparison 
with the interictal period, there is a relative decrease of 
power in the delta band that is accompanied by a relative 
increase in the remaining bands.  

c) Accumulated energy: The accumulated energy is 
computed for any moving observation window by 
averaging all successive values of energies calculated in 
that window. This can be considered as the running 
average of the energy [16]. Using this measure, 
promising results for seizure prediction have been 
reported [17]. However, the results could not be 
reproduced [18]-[19]. 

d) Hjorth parameters: Hjorth [20] defined three time-
domain parameters, activity, mobility and complexity, 
also called normalized slope descriptors. The activity is 
the variance of the signal which gives a measure of mean 
power. The mobility is the ratio of the root mean square 
(RMS) of the slopes of the signal to the RMS of the 
amplitude. This parameter may be considered as an 
estimate of the mean frequency.  The complexity gives a 
measure of the RMS of the rate of slope changes with 
reference to an ideal possible curve. This parameter gives 
an estimate of the bandwidth of the signal. Mormann et 
al. [13] found a preictal period with a significant increase 
in the Hjorth mobility and complexity with respect to the 
interictal period.  

e) Decorrelation time: Autocorrelation is the correlation 
between values of the signal at different points in time. It 
is computed as a function of the two times or of the time 
difference. It is usually used to detect “whiteness” in 
data. The first zero-crossing of this function is defined as 
the decorrelation time [12], [21]. Mormann et al. [13] 
could distinguish a preictal period from the interictal 
period by observing a decrease in the decorrelation time.  

f) Linear modeling: In linear modeling of a time series, one 
assumes that each value of the series depends only on a 
weighted sum of the previous values of the same series 
plus "noise". The main assumption in linear modeling is 
the stationarity of the signal. So, for non-stationary 
signals like EEG, one needs to segment it into stationary 
parts. Using autoregressive modeling, preictal changes 
have been reported before seizure onset [14],[22]. 

2) Nonlinear measures 
The nature of the mechanism leading to epileptic process 

is still not well understood. The linear assumption about 
EEG signals may not be true. Therefore, one may need 
nonlinear analysis. In this section, we present a review on 
the promising nonlinear measures for seizure prediction. 

a) Correlation dimension: The correlation dimension and 
the following two measures are centered on the concept 
of the correlation integral, which can be computed from 
the state space representation of EEG time series. The 
correlation integral is defined as the probability that any 
two randomly chosen points on the state space lie within 
a given distance of each other [23].  

The correlation dimension gives a measure of the 
dimensionality of the state space. This measure is used to 

distinguish random signals from deterministic time series 
[24]. The ability of the correlation dimension for seizure 
prediction has been proved in [25]. Lehnertz and Elger 
[25] demonstrated that significant drops in correlation 
dimension occurred prior to seizures. However, Harrison 
et al. [26] suggest strongly that the correlation dimension 
has no predictive power for epileptic seizures. 

b) Correlation density: The correlation density is calculated 
by computing the correlation integral for a fixed radius 
and using a combination of time delay and spatial 
embedding of EEG time series [12]. Martinerie et al. [27] 
demonstrated that in most cases, seizure onset could be 
anticipated well in advance. However, the ability of this 
measure for seizure prediction was questioned by 
McSharry et al. [28]. 

c) Kolmogorov entropy: The Kolmogorov entropy is a 
dynamic measure representing the rate at which 
information needs to be created as the dynamical system 
evolves over time [29]. It gives a measure of the level of 
uncertainty about the future state of the system [12]. The 
feasibility of using trends in Kolmogorov entropy to 
anticipate seizures in pediatric patients with intractable 
epilepsy has been demonstrated in [30]. It has been 
concluded that the Kolmogorov entropy is as effective as 
the correlation dimension in anticipating seizures. 

d) Marginal predictability: The marginal predictability is 
defined as the ratio of the correlation integral computed 
for different embedding dimensions. Different marginal 
predictability have been proposed [31]-[32] and applied 
for seizure prediction [33]. Li et al. [33] found that the 
difference between the marginal predictabilities 
computed for the remote and adjacent electrodes 
decreases several tens of minutes prior to seizure onset, 
compared to its value in the interictal periods. 

e) Dynamical similarity index: Dynamical similarity index 
is composed of the phase space reconstruction of the 
EEG time series using time intervals between two 
positive zero-crossings and the measurement of 
dynamical similarity between a reference window and 
test windows using the cross-correlation integral. Le Van 
Quyen et al. [34] showed that the method can track in 
real time spatio-temporal changes in brain dynamics 
several minutes prior to seizure. However, other studies 
[35]-[36] questioned the reliability of the optimistic 
results reported for the dynamical similarity index in 
[34]. 

f) Largest Lyapunov exponent: The Lyapunov exponents 
quantify the exponential divergence of initially close 
state-space trajectories and determine the predictability 
of a dynamical system. The largest Lyapunov exponent 
gives a measure for detecting the presence of chaos in a 
dynamical system [37]. Iasemedis et al. [38] used the 
largest Lyapunov exponent for characterizing intracranial 
EEG recordings and noted premonitory events several 
minutes prior to the onset of seizures in several 
recordings [39]. However Lai et al. [40] raised doubts 
about the ability of the Lyapunov exponent for seizure 
prediction. 
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g) Loss of recurrence: The loss of recurrence quantifies the 
degree of non-stationarity in a time series [41]. The 
frequency distribution of time distances under stationary 
conditions with respect to each reference point is first 
computed. If the system is non-stationary, an increased 
deviation from this distribution is observed due to the 
absence of distant time indices in the neighborhood of 
the reference. That is considered as a loss of recurrence. 
The predictability of this measure for epileptic seizures 
has been shown in [13]. 

h) Algorithmic complexity: Algorithmic complexity is a 
method based on symbolic dynamics to characterize 
dynamical systems by a discrete space consisting of 
infinite sequences of abstract symbols, each of which 
corresponds to a state of the system.  To this end, the 
state space is partitioned into a finite number of regions, 
each of which represented with some symbols. So each 
point in the state space gives an infinite sequence of 
symbols [42]. The algorithmic complexity values 
exhibited a preictal increase before the seizure onset with 
respect to the interictal period [13]. 

i) Local flow: The local flow aims at discriminating 
deterministic from stochastic dynamics [43]. This 
measure has been used to characterize epileptic EEG 
time series based on the hypothesis that the generation 
mechanism behind the epileptic process is characterized 
as nonlinear deterministic dynamics. Strong indications 
of nonlinear determinism were found in interictal EEG 
recordings from the epileptogenic zone, while EEG 
signals from other sites mainly resembled linear 
stochastic dynamics [44]. The ability of this measure for 
seizure prediction has been shown in [13].  

B. Bivariate Measures 
EEG time series analysis using bivariate measures 

involves the extraction of information reflecting interactions 
between different regions of the brain.  

1) Linear measures 
Linear bivariate measures aim in extracting linear 

synchronization patterns between different cortical regions.  

a) Autoregressive measure of synchrony: The 
autoregressive measure of synchrony is derived from a 
multichannel model of the EEG. In this model, each 
point is described as a linear combination of the previous 
values from all selected channels. The “goodness of fit” 
(GOF) of this model to the EEG shows how best the 
model is fitted for channels. With a higher degree of 
synchrony between channels, a better GOF is obtained 
[45]. Using this measure, no significant preictal changes 
were reported unless contaminated by residual postictal 
changes in closely clustered seizures.  

b) Maximum linear cross-correlation: The maximum linear 
cross correlation measure implies that two systems are 
linearly synchronized if their characteristic variables 
evolve identically over time [46]. A preictal loss in 
synchronization between EEG signals recorded 
simultaneously from different locations in the brain has 
been observed [13].  

2) Nonlinear measures 
Nonlinear bivariate measures give an indication of 

nonlinear spatiotemporal synchronization between different 
cortical regions.  

a) Dynamical entrainment: The dynamical entrainment is 
defined as a measure indicating ‘entrainment between 
two regions of the brain’. This measure indicates the 
statistical difference between the largest Lyapunov 
exponents over a number of consecutive time windows 
for two signals recorded from the brain regions using the 
T-index derived from a paired t-test for comparison of 
means. This measure has shown a good predictive power 
for prediction of epileptic seizures, with a relatively low 
false warning rate [47].  

b) Phase synchronization: The phase synchronization 
measures the degree to which two signals are phase-
locked during a short time period. In intracranial EEG 
data, this measure has shown its power to discriminate 
transient synchronization [48]. Analysis of long EEG 
recordings has shown that the epileptogenic process 
during the interictal state can be characterized by a 
pathologically increased level of synchronization as 
measured by the mean phase coherence [46]. In another 
study, a specific state of brain synchronization has been 
observed several hours before the actual seizure. The 
changes involved both increases and decreases of the 
synchronization levels often localized near the primary 
epileptogenic zone [49]. 

c) Nonlinear interdependence: For coupled systems without 
symmetries in a drive-response type configuration, the 
synchronization can develop nonlinear structure. In 
contrast, the nonlinear interdependence measure, an 
asymmetric measure, attempts to characterize statistical 
relationships between two time series in the state space. 
This measure provides additional information about the 
direction of interdependence [50]. Using this measure, 
studies have shown extremely low dependences between 
the epileptic generating areas before the seizure onset. 

IV. CONCLUSION 
Several studies have compared linear and nonlinear 

measures for seizure prediction [5]-[12]. Some of them 
found no clear superiority of the nonlinear measures over 
linear measures [46], [13]. Mormann et al. [13] provided a 
vast investigation to compare a number of linear/nonlinear 
and univariate/bivariate measures to distinguish the preictal 
state from the interictal state in a very statistical way. While 
several measures showed significance differences, bivariate 
measures were generally more effective.  

Although promising results have been reported by 
different methods but none of them could obtain a robust 
tool being able to predict seizures for different seizures and 
patients. It seems a combination of different univariate and 
bivariate measuress in an optimal manner may result in a 
better approach for seizure prediction with high sensitivity 
and low false alarm rate. Special attention has to be paid for 
channel selection if one needs to provide a real time seizure 
prediction tool.  
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