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Abstract— Recent research efforts in studying brain con-
nectivity has provided new perspectives to understanding of
neurophysiology of brain function. Connectivity measures are
typically computed from electroencephalogram (EEG )signals,
yet the presence of volume conduction makes interpretation
of results difficult. One possible alternative is to model the
connectivity in the source space. In this study, we proposed
a novel source separation technique in which EEG signals
are represented as a state-space framework. The framework
jointly models the underlying brain sources and the connectivity
between them in the form of a generalized autoregressive (AR)
process. The proposed technique was applied to real EEG data
collected from normal and Parkinson’s patients during a motor
task. The extracted sources revealed the abnormal beta activity
in Parkinson’s subjects and showed similar biological networks
as previous studies.

I. INTRODUCTION

In neurobiology, there has been increasing interest in

identifying functional connectivity between brain regions, as

connectivity is believed to provide an integrating framework

for a variety of complex brain functions. Several mathemat-

ical methods have been explored to provide a quantitative

measure of brain connectivity using electroencephalography

(EEG) data, including correlation, coherence and Granger

causality [1], [2]. In most studies, these connectivity mea-

sures are directly computed from scalp EEG signals. How-

ever, owing to volume conduction, the signal measured from

an EEG electrode does not exclusively represent the activity

of one local neural source, but rather the superposition

of active sources throughout the brain [3]. This can give

rise to spurious correlations between scalp EEG signals

and potentially lead to misinterpretation of the connectivity

results.

To address the problem of volume conduction in EEG,

several studies have proposed studying the brain connectivity

in the “source space” which involves estimating the under-

lying neural sources from scalp EEG signals. Determining

neural sources from EEG signals is a mathematically ill-

conditioned inverse problem, and it has no unique solution

without prior knowledge or strong statistical assumptions [4].

One common approach to solving the source identification

problem is the dipole modeling technique, which aims to find

current dipoles that best describe the observed EEG signals.

However, the successful estimation of sources depends on

many factors, including models of the generators of the
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electrical activity, knowledge of the number of active dipoles,

and the shape and conductivity of the head model [5].

Another possible approach to finding brain sources is to

use blind source separation (BSS) algorithms. BSS aims to

extract a set of underlying sources from observed signals by

making certain assumptions about the statistical properties

of the source signals. One of the most widely used BSS

algorithms in neuroscience studies is independent component

analysis (ICA). Fundamentally, ICA assumes the sources are

mutually independent. Most of the commonly used ICA algo-

rithms further assume that observed signals are instantaneous

linear mixtures of the underlying sources and their temporal

ordering is irrelevant [6]. However, the underlying assump-

tion of statistical independence between the activations of

different neural assemblies still remains to be validated

experimentally [4]. Furthermore, as we try to determine the

causal relationships between EEG sources, it is implicitly

assumed that the sources are not only temporally correlated

within themselves but also cross-correlated between each

other. This contradicts the fundamental assumption of ICA.

To address these concerns, we propose a state-space

framework which allows the underlying brain sources and

the connectivity between them to be modeled jointly. In this

framework, the scalp EEG signals are represented as linear

mixtures of unobserved brain sources resulted from volume

conduction. The sources are modeled by a multivariate au-

toregressive (mAR) process, where the residuals are assumed

to be mutually independent and follow generalized Gaussian

distributions. This framework is similar to the one proposed

by Gómez-Herrero et al. [7], where the source separation

is done by a heuristic, multi-stage approach which involves

performing mAR estimation and ICA sequentially. However,

as noted by the authors that the successful separation of

sources depends strongly on the accuracy of the mAR

estimation step, including the fitting of the mAR model

to EEG data and parameter estimation. Here, we propose

solving this framework analytically by modeling the residual

process of the sources explicitly using generalized Gaussian

distribution. This allows the simultaneously estimation of the

sources and mAR parameters using a maximum likelihood

approach.

The paper is organized as follows. In Section II, we

introduce the generalized multivariate AR (GmAR) source

separation algorithm and the clustering method used for

finding group-representative source estimates. The proposed

source separation algorithm is applied to EEG data collected

from 6 healthy subjects and 5 Parkinson’s disease (PD)

patients during a right-handed bulb-squeezing task. The
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clustering results are discussed in Section III.

II. METHODS

A. AR Source Separation

1) EEG Signal Model: Let xxx(t) =
[x1(t), x2(t), . . . , xM (t)]T denote an M -dimensional

EEG data vector at time t, where the superscript T denotes

the transpose. We assume that xxx(t) are generated from an

instantaneous mixing of the sources, which is written as

xxx(t) = CCCsss(t), 1 ≤ t ≤ N (1)

where sss(t) = [s1(t), s2(t), . . . , sM (t)]T denotes the underly-

ing EEG sources, and CCC is an M ×M mixing matrix where

the i-th column represents the projection from the i-th source

to the scalp electrodes, also commonly referred to as “scalp

maps” in ICA literature.

In the proposed signal model, we assume that the sources

sss(t) are modeled by a generalized multivariate AR (GmAR)

process of order P , which is written as

sss(t) =
P∑

p=1

AAApsss(t − p) + vvv(t) (2)

where AAAp ∈ RM×M is the mAR coefficient matrix at time

lag p and vvv(t) = [v1(t), v2(t), . . . , vM (t)]T denotes the

residual process whose elements are assumed to be mutually

independent. Furthermore, we assume that each element

of vvv follows a zero-mean, univariate generalized Gaussian

distribution with the density

p(vi(t)|Ri, wi) =
Ri

2wiΓ(1/Ri)
e
−|

vi(t)

wi
|Ri

, (3)

where Γ(·) is the gamma function and the noise parame-

ters Ri and wi determine the shape and the width of the

distribution. Generalized Gaussian distribution is a more

general parametric form of Gaussian which can model super-

Gaussian when Ri < 2, Gaussian when Ri = 2, and sub-

Gaussian when Ri > 2. This noise model has been used in an

ICA model recently developed by Penny et al. for modeling

EEG signals [8].

In summary, the signal model can be specified by the

following parameter set

θθθ = {CCC,AAAp, Ri, wi}, 1 ≤ p ≤ P (4)

1 ≤ i ≤ M.

Our objective is to estimate the model parameter set θ,

together with the time courses of sss(t), using the maximum

likelihood approach.

2) Maximum Likelihood Estimation: In this paper, the

model parameters are estimated using an iterative maximum-

likelihood approach. Specifically, at each estimation, the

unobserved sources sss(t) are first estimated using WWW (defined

below) estimated from previous iteration, and the sources are

used, as if they were observed, to update the log-likelihood

function. The model parameters are then re-estimated based

on the updated log-likelihood function.

Let us first define the data likelihood (likelihood of all

samples of observations) with respect to θθθ as follows

L , pxxx(xxx(1),xxx(1), . . . ,xxx(N)|θθθ) (5)

Let WWW denote the unmixing matrix which is defined as

WWW = CCC−1 such that sss(t) = WWWxxx(t). Using the multivariate

transformation, the likelihood of observations defined in (5)

can be calculated from the likelihood of the source densities

as follows

L = (
1

|det (WWW−1)|
)Npsss(WWWxxx(1),WWWxxx(2), . . . ,WWWxxx(N))

= (|det (WWW )|)Npsss(sss(1), sss(2), . . . , sss(N)) (6)

where | · | denotes the absolute value. Since the sources

follow a P -th order multivariate AR process, the conditional

probability of each time point depends only upon its previous

P time points, i.e.,

psss(sss(t)|sss(t − 1), . . . , sss(1))

= psss(sss(t)|sss(t − 1), . . . , sss(t − P ))

= pvvv(sss(t) −
P∑

p=1

AAApsss(t − p)) (7)

Under the assumption of mutual independence of the resid-

uals, the right-hand side of (7) can be simplified as

M∏

i=1

pvi
(eeeT

i (sss(t) −
P∑

p=1

AAApsss(t − p))|wi, Ri), (8)

where eeei is the i-th column of an M × M identity matrix.

Combining (6), (7) and (8), we can rewrite the data

likelihood as follows

L = (|det (WWW )|)Npsss(sss(1), . . . , sss(P )) (9)
N∏

t=P+1

M∏

i=1

pvi
(eeeT

i (sss(t) −
P∑

p=1

AAApsss(t − p))|wi, Ri)

By taking the logarithm of (9), we obtain the log likelihood

function of the observations

LL , log pxxx(xxx(1),xxx(1), . . . ,xxx(N))

= N log(|det (WWW )|) + log psss(sss(1), . . . , sss(P ))

+
N∑

t=P+1

M∑

i=1

log
Ri

2wiΓ(1/Ri)
− |

zi(t)

wi

|Ri (10)

where

zi(t) = eeeT
i (sss(t) −

P∑

p=1

AAApsss(t − p)). (11)

ML estimates of model parameters are found by setting

the respective partial derivative of the log-likelihood (i.e.,
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Fig. 2. Dendrogram and similarity matrix

community to perform a right-handed motor task. PD sub-

jects were studied after a minimum of 12 hours withdrawal

from L-dopa medication.

During the experiment, subjects were seated 2 m away

from a large computer screen. They were asked to squeeze

a pressure responsive bulb with their right hand in order

to match vertical target bars on the screen that represented

25 % of maximum voluntary contraction (MVC). The task

consisted of 8 squeezing trials, where each trial contained 10

seconds of rest period followed by 2 seconds of squeezing

(see Fig. 1). Calibration of the squeeze bulb to record MVC

for each subject was conducted at the beginning of the

experiment.

Brain activity data was collected using an EEG cap

(Quick-Cap, Compumedics, Texas, USA) with 19 elec-

trodes using the International 10-20 system, referenced to

linked mastoids. EEG data was sampled at 1000Hz using

SynAmps2 amplifiers (NeuroScan, Compumedics, Texas,

USA). A surface electrode on the tip of the nose was

used as ground. Eye movement artifacts were measured

using surface electrodes above and below the eyes (Xltek,

Ontario, Canada). Data were resampled to 250Hz and band-

passed from 1 to 70Hz. Artifacts associated with eye blinks

and muscular activity were removed using the Automated

Artifact Removal in the EEGLAB Matlab Toolbox [10].

B. Source Separation Results

For each subject, EEG signals recorded during the squeeze

periods of 8 trials are concatenated. Furthermore, to reduce

computational load and prevent overlearning, data dimension

(M ) is reduced from 19 to 6 by dividing electrodes into

6 regions and averaging signals within each region. The 6

regions are: Region 1 - (FP1, F7 and F3), Region 2 - (FP2,

F4 and F8), Region 3 - (T7, C3, P7, P3), Region 4 - (T8,

C4, P8, P4), Region 5 - (Cz, Pz) and Region 6 - (O1, O2).

Since averaging is a linear operation, the separability of the

underlying source will not be affected. The proposed source

separation algorithm is applied to the averaged signals of
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Fig. 3. Source projection patterns corresponding to the centrotypes
of Cluster 5, 7, 8 and 9. The numbers of normal and PD subjects
that contribute to a given cluster are also shown.

these 6 regions, yielding 6 source estimates. To recover the

projection patterns from the sources to the 19 electrodes,

linear regression is used:

xxxi = sss∗cccT
i + ǫǫǫ ∀ i = 1, . . . , 19 (17)

where xxxi ∈ R
N×1 is a column vector representing the EEG

signal from the i-th electrode, sss∗ ∈ RN×6 is the time courses

of all source estimates and ccci ∈ R
1×6 is the i-th row of the

mixing matrix CCC. The resulting CCC is of dimension 19 × 6.

For each subject, the proposed GmAR source separation

algorithm is setup to run 10 times with random initial condi-

tions and the solution with the highest likelihood is used as

the final estimates. Clustering is applied to source projection

patterns from all normal and PD subjects. We select the

number of clusters to be 11. The clustering results including

the dendrogram and the similarity matrix are shown in Fig. 2.

Cluster 5, 7, 8 and 9 are identified the significant clusters

with high inter-subject repeatability. In particular, cluster 8

is found in 10 out of 11 subjects whereas cluster 5, 9 and 7

are found in 8, 7 and 6 subjects, respectively.

The scalp maps corresponding to the centrotypes of cluster

5, 7, 8 and 9 are shown in Fig. 3 and are consistent

with biological networks previously described. Cluster 8

corresponds to the occipital area which is related to the visual

task. Cluster 5 reflects possible error-monitoring processes

(often called ”Error Related Negativity) in the psychology

literature. Cluster 9 is over the left sensorimotor cortex which

would be expected to be activated with a right-handed task.

Cluster 7 reflects a left frontal/right sensorimotor system

previously shown in to be important for rhythmic tasks.

Spatial filters derived using the procedure described in

Section II-A.3 are applied to the entire EEG recording (in-
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Fig. 4. (a) and (b): Spectrograms of the sources corresponding to Cluster 9. Eight trials are shown. (c) and (d): Beta (15-30Hz) activity.
The square wave shows the state of the visual stimuli (low-rest; high-squeeze). Notice the strong attenuation in normal subjects during
the squeezing periods.

cluding rest and squeeze periods) of the corresponding sub-

jects. Spectrograms of the estimated sources are computed

and averaged across subjects. The averaged spectrograms of

the source corresponding to Cluster 9 (the motor area) from

normal and PD subjects are shown respectively in Fig. 4(a)

and (b). It can be seen that the estimated sources are well

modulated by the motor state (rest/squeeze) in normal sub-

jects, whereas this pattern is less prominent in PD subjects.

Furthermore, when we average the spectrograms over the

beta-band (15-30Hz), we notice a strong attenuation of beta

activity in the normal subjects during the squeezing periods,

whereas the attenuation in PD subjects is considerably less

noticeable. This observation is in line with existing PD

studies which reported abnormal beta oscillations during

movement in Parkinson’s patients [11].

IV. CONCLUSION

We proposed an EEG source separation technique which

addressed the issues of volume conduction and the temporal

and spatial correlations between underlying EEG sources.

Furthermore, clustering technique employed in this study

resolved the source ambiguity problem commonly seen in

applications of source separation techniques to group anal-

ysis. The real EEG results demonstrated that the proposed

technique is promising for finding task-related brain sources.
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