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Abstract- We propose a partial directed coherence (PCD) method 
based on a sparse multivariate autoregressive (mAR) model to 
investigate patterns of information flow in electroencephalography 
(EEG) recordings in Parkinson's disease (PD) patients performing 
a visually-guided motor task. The use of a sparsity constraint on the 
mAR matrix addresses issues such as sample size, model order 
selection and number of parameters to be estimated, particularly 
when the number of EEG channels used is large and the window 
size is small in order to capture dynamic changes. The proposed 
PDC-based information flow analysis demonstrated distinctly 
altered patterns of connectivity between PD patients off medication 
and healthy subjects, particularly with respect to net information 
outflow from the left sensorimotor (L Sm) region, which might 
indicate excessive spreading of activity in the diseased state. 
Disrupted patterns of connectivity in PD were partially restored by 
levodopa medication. In addition, PDC-based analysis proved to be 
more sensitive to temporally-dynamic connectivity changes as 
compared to traditional spectral analysis, which might be 
influenced primarily by large-scale changes. We suggest that the 
proposed sparse-PDC method is a suitable technique to investigate 
altered connectivity in Parkinson's disease. 

I. INTRODUCTION 

Recent trends in neurobiology and signal processing 
research show an increased interest in understanding the 
functional connectivity of brain regions that can be inferred 
from electroencephalography (EEG) data. Since the EEG 
remains the most widespread technology capable of 
recording brain activity at msec resolution, several 
mathematical methods have been proposed to infer 
connectivity changes that occur at rapid time scales, such as 
correlation, coherence and Granger causality [1 , 2]. 

Disrupted brain connectivity is being increasingly 
recognized in pathological conditions such as Parkinson's 
disease, epilepsy, schizophrenia and Alzheimer's Disorder 
(AD) [3-5]. 

Parkinson's disease (PD) is an excellent model to assess 
abnormal synchronization and connectivity in humans. 
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Patients undergoing surgery for deep brain stimulation 
(DBS) have electrodes placed in deep brain structures such 
as the subthalamic nucleus (STN), providing a unique 
opportunity to assess local field potential (LFP) oscillatory 
behavior in brain circuits that are not normally accessible by 
non-invasive (scalp) EEG recordings. These neuronal 
recordings demonstrate abnormal synchronization of 
neuronal activity within basal ganglia (BG) structures such 
as the STN and the globus pallidus external (GPe) [4]. In 
particular, excessive synchronization in the ~-band (13-30 
Hz) in these brain structures appears to suppress movement 
and could thus be involved in PD symptoms such 
bradykinesia (slowness of movement) [4,6,7]. Moreover, the 
PD state results in large-scale oscillatory activity that can 
readily propagate through the BG circuitry and spread to 
numerous cortical areas through BG-thalamocortical 
connections [7-9] , and therefore the EEG might be an 
accurate, albeit indirect, marker of abnormal BG 
oscillations, despite the fact that it still largely reflects 
cortical activity. Most significantly, work in PD patients 
undergoing DBS surgery of the STN and performing a 
choice reaction task has shown that patterns of event related 
synchronization (ERS) and desynchronization (ERD) in the 
a and ~-bands were robustly detected simultaneously in both 
scalp and depth recordings [10]. 

In order to investigate functional connectivity changes in 
PD, we employed a partial directed coherence (PDC) based 
methodology. Traditional methods of EEG analysis such as 
coherence and Granger causality (GC) are limited by the fact 
that they can only investigate pair-wise connectivity while 
neglecting the possible influence(s) from other nodes. While 
coherence is unable to identify the direction of information 
flow between cortical regions [1] , GC is capable of this 
distinction. GC is based on comparing the variance of 
residuals from a scalar autoregressive (AR) application to 
one signal x(t), with that from a bivariate AR application to 
x(t) and a potentially driving signal yet) [11]. However, 
traditionally GC has only been used in multiple pair-wise 
analyses when considering the multichannel case [2]. 

To overcome these limitations, partial directed coherence 
(PDC) examines multi-channel time series and allows the 
simultaneous modeling of all channels with a multivariate 
autoregressive (mAR) model [2]. Moreover, since neural 
signals often exhibit frequency-specific oscillatory activity, 
the ability to provide spectral information of causal relations 
makes PDC an attractive tool for neuroscience studies. 
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Finally, since PDC takes into account influences of all other 
channels when assessing the connectivity between any given 
pair of signals, it will be more robust to volume conduction 
effects that may affect standard coherence techniques. 

However, the computation of PDC poses several technical 
challenges in real applications, especially when the number 
of EEG channels of interest is relatively large in practice 
(e.g. ~20). As noted in [1], the successful estimation of PDC 
critically depends upon the proper fitting of the mAR model 
to the data, which in tum is dependent upon the number of 
channels, optimal mAR model order selection and sample 
sizes of the training data. In general, a higher model order 
allows more intricate data dynamics to be captured and gives 
a higher frequency resolution, but at the expense of a greater 
number of parameters to be estimated. 

Furthermore, the full-connectivity assumption of PDC 
analysis may be questionable in EEG results, as the EEG 
typically demonstrates "small world" network properties, i.e. 
most nodes are not directly connected to one another, but 
long range connections between local clusters of nodes can 
be present [12-13]. Additionally, a sparse model requires the 
estimation of fewer parameters, of critical importance when 
data samples are at a premium. 

The above observations motivated us to incorporate a 
sparse mAR model into the current PDC technique as has 
recently been suggested for fMRI analysis [14]. In this 
paper, we utilized a sparse mAR-based PDC technique in 
which PDC estimates are derived from sparse mAR 
coefficient matrices given by penalized regression. Penalized 
regression effectively reduces the number of free parameters 
to be estimated, which is particularly important when the 
data are of limited sample size. 
The sparse-mAR based PDC model was used to determine 
patterns of information flow in PD patients performing a 
visually guided joystick task. This task has previously been 
shown to modulate ~-band synchronization of local field 
potential (LFP) recordings of PD patients undergoing DBS 
surgery [15]. 

II. METHODS 

We first review traditional multivariate autoregressive 
models and least square-based parameter estimation 
techniques. 

A. Sparse mAR Model 
In a regular mAR model, the multivariate time series at 

each time point is represented as a linear, weighted sum of 
its previous time points, and it can be formulated as 

p 

yet) = LA,y(t-r )+e(t) (1) 
r = 1 

where the observationy(t) is a d-dimensional vector at time 
t, p denotes the order of the mAR model, and the vector e(t) 
represents white Gaussian noise. The mAR coefficient AI" is 
a d x d matrix, where the element AI" (iJ) measures the 
influence that variable j exerts on variable i after r time 
points. In a regression framework, Eqn 1 can be rewritten as 

where: 

Z= X~ + E 

Z = Yp + 1:N 

[y(p + 1) , y(p + 2) , ... , y(N)f , 

X = [Yp:N - I,Yp - I:N - 2" ' " Y 1:N - p]' 

~ = [A"A2 , ·· · , A p f, 

E = [e(p + 1) , e(p + 2), ... e(N)f. 

(2) 

Equation (2) can be solved using the maximum likelihood 
(ML) approach. Under the iid (independent and identically 
distributed) white noise assumption of E, this is equivalent 
to minimizing the mean square error: 

(3) 

It is worth emphasizing that the performance of the ML 
estimator is highly dependent on the sample size N and the 
number of parameters to be estimated. In real applications, 
the available data points are often limited, which in tum 
leads to poor estimation accuracy. Furthermore, the 
estimated coefficients yielded by the least square (LS) 
approach in (3) are typically non-zero, which makes 
neurobiological interpretation of results (e.g. identifying 
brain connectivity patterns in EEG studies) difficult. Such 
non-zero observations are also against the sparsity 
assumption in brain connectivity networks. 

To address these issues, a possible solution is to impose 
sparsity constraint on the mAR coefficients (i.e. AI" matrix) 
and perform variable selection using penalized regression 
methods [14]. The basic idea of penalized regression is to 
maximize the likelihood while at the same time, penalize 
complex models. In mathematical terms, penalized 
regression can be expressed as the minimization of the 
penalized least square function: 

d 

~ = argminll(Z - X~)112 + A22>(I~j I), (4) 
~ i=l 

where A is the regularization parameter. We determine the 
value of A using the Bayesian information criterion (BIe). 
Several different penalty functions have been introduced in 
the literature, including ridge, LASSO and SCAD. An 
overview of these penalty functions can be found in [16]. 
Here we use the popular LASSO penalization 

(5) 

because of its ability to automatically set small coefficients 
to zero, which effectively yields sparse solutions [16]. 

To solve the optimization problem in (4), we use a Local 
Quadratic Approximation (LQA) algorithm, proposed by 
Fan and Li [16]. LQA first casts the problem of penalized 
least square minimization presented in Eqn. 4 into a 
penalized likelihood maximization problem. It further 
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addresses the issue of singularity at the origin that exists in 
penalty functions such as LASSO and SCAD by locally 
approximating "p(1 ~j I)' with a quadratic function. The 
resulting penalized likelihood function becomes both 
differentiable and concave, and it can be easily solved using 
gradient-based optimization methods such as the Newton­
Raphson algorithm. A detailed description of the LQA 
algorithm can be found in [16]. 

B. Partial Directed Coherence 
PDC can be considered as the frequency-domain 

representation of Granger causality. It involves the 
transformation of the mAR coefficients in (2) into the 
frequency domain via the Fourier transform 

p 

A(f) = I - LAre- i2nIr (6) 
r=l 

where I is a d x d identity matrix. The estimate of PDC from 
the node Yi to the node Yj is def~ed as 

Aj ,i(f) 
ffYjf-Y; (f) = d 2 . (7) 

~LmJAm,i (f)1 
PDC takes on a value between 0 and 1, and describes the 
pairwise relatedness between Yi and Yj as a function of 
frequency after discounting the effect of other 
simultaneously observed series. 

e. Subjects 

Nine volunteers with mild to moderately severe, clinically 
diagnosed PD participated in our study. All patients stopped 
their levodopa medication overnight for a minimum of 12hrs 
before the study. We also recruited nine healthy aged­
matched volunteers without active neurological disorders. In 
each group, eight subjects were right-handed and one was 
left-handed. 

250 ms 

I 2500 ms 

+ 0 
12000 ms (max) 

I 1000 ms 

0+0 0 I 1500 ms 

0 0 0 
~O 0+0 

0 + 
~ 

Fig. 1. Visually guided choice reaction paradigm. 

D. Experimental Design and Data Collection 

Subjects performed a visually guided joystick task [15]. 
Briefly, subjects had to use a joystick with their dominant 
hand to select one of four randomly activated (yellow) 
targets as quickly as possible (Fig. 1). Targets turned green 

once they were correctly selected. A total of 68 trials were 
presented, with an equal number of targets in each direction. 
Target presentation was pseudo-randomized so that the same 
sequence of trials was presented to each subject. 

Subjects were fitted with an EEG cap with 20 active 
channels using the international 10-20 placement system, 
referenced to the mastoids. Artifacts due to eye movements 
were recorded by surface electrodes placed above and below 
the eyes. Data were recorded at 1000 Hz and aligned to task­
related events via TTL pulse timestamps sent from the 
stimulus computer (via Matlab commands) to the EEG 
system through the parallel port. 

E. Data Analysis 

Data were down-sampled to 250Hz, and eye and EMG­
derived artifacts were removed via the Automatic Artifact 
Removal (AAR) toolbox v1.3 (Release 09.12, Gomez­
Herrero 2007) of the EEGLab open source Matlab Toolbox 
[17]. The denoised data were then bandpassed at 1-100 Hz. 
Next, data were normalized to unit variance and 
subsequently averaged over four electrode regions {Fronto­
central (F-Central): Fpl , Fp2, F3 , F4, F7, F8, Fz, Left 
sensorimotor (L Sm): C3 , P3 , T7, P7, Right sensorimotor (R 
Sm): C4, P4, T8, P8, and Central: Cz, Pz}. 

F. l . Spectral analysis 

For each subject group (Normals, PD) and each subject, 
trials were analyzed separately by computing spectrograms 
over the 0-50 Hz frequency range for each individual trial. 

For analysis purposes, a trial was defined as the time from 
the initial presentation of the fixation cross to the end of the 
immediately following inter-trial interval (i.e. from cross to 
cross as depicted in Fig. 1). The window size used was 32 
samples and the window was 16. 

Individual trial spectrograms for each electrode region 
were then averaged across all subjects within one group. In 
order to ensure that trials were all the same length, they were 
truncated to the shortest trial length (5.816 s). 

F.2. Sparse mAR-based PDC analysis 
Information flow between pairs of electrode regions was 

determined by computing the PDC spectrum, based on a 5th 

order sparse mAR model as described in Sections II A-B, for 
each individual trial. In order to ensure that trials were all 
the same length, they were again truncated to the shortest 
trial length as described above. The window size for the 
PDC spectrum analysis was 120 samples (= 0.48s) and the 
window shift 16 samples (= 0.064s) and the PDC was 
computed over the 0-50 Hz frequency range. Individual trial 
PDC spectrograms (PDCograms) were then averaged across 
all subjects within each group, for each direction of flow 
between pairs of electrode regions (e.g. L Sm-7F-Central, 
and F-Central-7L Sm). 

To assess the statistical significance of the PDC changes, 
we integrated the PDC in the 15-30Hz band and calculated 
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the difference between the PDC before subjects were 
moving the joystick and the ~ 1-s they were moving the 
joystick for each trial. A two-way ANOY A with subject and 
group factors was computed. Level of significance was set at 
p = 0.0260, corresponding to p = 0.05 with an FDR 
correction. 

We then sought to determine the overall information flow 
into and out of each electrode region. For each region of 
interest, the sum of the average information flow towards 
each of the remaining regions was subtracted from the sum 
of the average information flow into the region of interest 
over the 0-50 Hz frequency range and over the length of a 
trial. The final values were then displayed as Delta 
PDCograms, where positive values in the color map indicate 
net flow of information into the region of interest, while 
negative values indicate information outflow from the same 
regIOn. 

III. RESULTS 

A. Spectral Analysis 
The spectral analysis showed a decrease in ~-band power 

over the 15-30 Hz range in correspondence to the onset of 
the "Go" cue in the F -Central, L Sm and R Sm regions (Fig. 
3). This ~ band power decrease was especially evident in the 
normal subjects, and rebounded to rest levels in 
correspondence to the end of movement. In contrast, blunted 
modulation was present at the same latency in PD subjects. 
The ANOYA test found significant group effects in L_Sm-7 
F -Central and F -Central -7 L Sm connections. 

Spectral analysis of the Central region in control subjects 
showed increased power in the 0-10 Hz range in 
correspondence to movement. The overall power in the 
Central region was also decreased as compared to the power 
in the other regions. In PD, there was an overall increase in 
0-10 Hz power across the entire trial, although a modest 
power increase, mimicking that seen in control subjects, was 
also observed in correspondence to movement. 

Fig. 2. Representation of the information flow into and out of the 
regions of interest (F-Central, L Sm, R Sm, Central) . As depicted in 
the Delta PDCograms (Fig. 4), colours in the red range (positive 

values) represent net inflow, while colours III the blue range 
(negative values) represent net outflow. 

B. PDC-based Information Flow Analysis 
Information flow analysis revealed striking differences 

between control subjects and PD subjects, particularly with 
respect to net inflow and outflow to the L Sm and Central 
regions (Fig. 4).In control subjects, a net outflow in the 10-
20 Hz range was observed in the L Sm region, while a net 
inflow was present in higher (>35 Hz) and lower «10Hz) 
frequency ranges. In contrast, PD subjects showed an 
increased outflow in the 10-20 Hz range, and a 
corresponding decreased inflow in the same higher and 
lower frequency ranges. 
Interestingly, the patterns of information flow in the Central 
region reverse-mirrored those observed in the L Sm region. 
In particular, the net inflow pattern in the 10-20 Hz range 
observed in the control group was greatly increased in the 
PD group, except during the peri-movement interval. PD 
subjects also showed an increased inflow to the R Sm region 
in the <10 Hz frequency range as compared to normal 
subjects. Moreover, PD subjects showed an increased net 
inflow to the F -Central region over a wide frequency range 
(> 30 Hz) as compared to control subjects. 
The pair-wise flow analysis shown in the individual 
PDCograms (Fig. 3) also revealed peculiar patterns of 
information flow, particularly with respect to the Land R 
Sm areas and the F-Central region. In PD subjects, the bi­
directional flow between the Land R Sm areas was in fact 
greatly decreased as compared to control subjects at 
frequencies <20 Hz. In addition, PDC analysis revealed 
asymmetry in pairwise connectivity between the L Sm and 
F-Central region in normal subjects. In fact, the decrease in 
~ power observed during movement rebounded much later in 
the L Sm-7 F-Central direction of flow as compared to the 
F-Central-7 L Sm connection. This pattern of connectivity 
may underlie the greater drive from motor areas recruited by 
the task to the frontal and prefrontal areas not only during 
the movement phase but also in the recovery phase 
immediately following completion of the task. 
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Fig. 3. Average spectrograms (diagonal terms) and PDCograms 
(non-diagonal terms) for each electrode region. Red vertical bars 
indicate the mean reaction times . "Cue" indicates presentation of 
the target circles, while "Go" indicates the target activation. 

DISCUSSION 

Our results indicate that healthy and PD subjects show 
considerable differences in the modulation of ~ band 
activity. While control subjects down-regulate ~ power 
during movement, PD subjects are unable to similarly 
modulate activity in this frequency range. This result is 
consistent with LFP studies that have suggested that 
excessive synchronization in the ~ band in PD subjects 
might have an anti-kinetic effect, thus being responsible for 
PD symptoms such as bradykinesia (slowness of movement) 
[4,6,7]. From a behavioral point of view, the PD-affected 
individuals showed increased reaction times (albeit not 
significantly) as compared to the control group (PD: 0.91 ± 
0.12 s, Normals: 0.76 ± 0.16 s) . 

FCentra l LSm RSm Central 

Fig. 4. Average information flow into the electrode regions of 
interest for all subject groups . Positive values indicate net inflow, 
while negative values indicate net outflow. Red vertical bars 
indicate the mean reaction times . "Cue" indicates presentation of 
the target circles, while "Go" indicates the target activation. 

The observed increase in net outflow from the L Sm 
region in the diseased state might indicate an excessive 
spread of activation from the primary motor areas involved 
in the contralateral movement, to neighboring regions. For 
example, current fMRI work in our group has demonstrated 
a wider spread of activation in PD subjects (as measured by 
amplitude and spatial variance in the BOLD response) in 
bilateral cerebellar hemispheres, primary motor cortex (Ml) 
and supplementary motor area (SMA) during a visuo-motor 
tracking task using a pressure-responsive bulb [18]. Previous 
cognitive studies have also shown a wider spread of 
activation in the prefrontal cortex of PD subjects off 
medication [19]. Thus, while it might be difficult - in part 
due to the nature of EEG data itself - to assess with certainty 
the absolute significance of neuronal activity modulation 
during a motor task, our results appear to be consistent with 
a body of knowledge that involved the use of different 
experimental techniques (fMRI, LFP recordings). 

Overall, our results suggest that the use of a sparse mAR, 
PDC-based technique might be better-suited than spectral 
analysis to detect information flow changes between brain 
regions. The PDC-based information flow analysis was in 
fact able to reveal patterns of connectivity otherwise 
undetectable through simple spectral analysis, given that 
spectral analysis patterns were not considerably different 
across most regions (in particular F -Central, L Sm and R 
Sm) for a given subject group. Thus, spectral analysis might 
be primarily sensitive to large-scale power changes, and 
therefore might not reveal specific patterns of information 
flow between different brain regions, that might differ in the 
normal and diseased states. 

In addition, the use of a sparse mAR model is invaluable 
in that the sparsity constraint reduces the risk of over-fitting 
the data, thus leading to higher sensitivity in the detection of 
connectivity changes that can occur during a motor task. 
This is especially true given that activity modulation across 
the motor task interval is quite rapid (even as detected by 
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spectral analysis), and thus short window sizes are needed to 
allow sufficient temporal resolution, which can lead to a 
significant increase in the number of parameters to be 
estimated. 

In order to reduce computational demands, we employed 
an averaging method to reduce the number of nodes used in 
the mAR model and obtain a limited number of regions of 
interest but we are currently exploring other ways to better 
define these brain areas, such as for example the use ofICA­
based techniques. To further reduce the number of 
parameters to be estimated, only four areas of interest were 
included in our study, since they were most relevant to the 
analysis of the motor task presented in our study. However, 
future averaging or clustering methods might allow us to 
better identify other potential regions of interest. 

Overall, the use of a sparse mAR-based PDC technique 
was able to reveal patterns of information flow that are quite 
different between healthy controls and PD subjects, and that 
would not otherwise be revealed by traditional spectral 
analysis methods. Although future work is needed to further 
optimize the choice of electrode regions or nodes used in the 
analysis, sparse mAR-based PDC appears to be well-suited 
to detect temporally-sensitive connectivity changes in both 
the healthy and the diseased state. Thus, this technique might 
be applicable to the investigation of brain activity patterns in 
other neurological conditions, such as epilepsy or 
schizophrenia, which are characterized by rapid and/or task­
dependent connectivity changes. 
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