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Abstract—This paper presents an evidential segmentation scheme

of respiratory signals for the detection of the wheezing sounds. The
segmentation is based on the modeling of the data by evidence theory

which is well suited to represent such uncertain and imprecise data.

In this paper, we particularly focus on the modelization of the data
imprecision using the fuzzy theory. The modelization result is then

used to define the mass function. The effectiveness of the method is

demonstrated on synthetic and real signals.

Index Terms—Data fusion, segmentation, imprecision, evidence the-

ory, fuzzy membership function.

I. INTRODUCTION

Since the invention of the stethoscope, respiratory sounds

acoustic analysis has been used to evaluate and diagnose patients

with lung diseases. Nevertheless, this method has a high degree of

subjectivity relative to the specialist. During the last decade, sound

signal digitization and processing techniques have been developed

[1], [2] contributing to make more objective the method by means

of quantitative data. Respiratory sounds can be divided into normal

and abnormal categories according to their acoustic properties.

Wheezes are adventitious sounds with a duration long enough to

perceive a musical tone (100 − 250ms). They give information

about lung airways activity, showing their obstruction level. This

is the reason why those sounds could be of interest to detect

respiratory chronic obstructive diseases and study its evolution.

The automatic signal analysis process consists of acquiring

signals originating from a source throw one or more sensors. The

robustness of the processing techniques can be improved by using

more sensors. In such case, information of multiple sensors needs

to be combined into one representation. Therefore, data fusion has

become in important field of research on medicine engineering.

More sophisticated methods of multi-sources data fusion have

been proposed [3] such as the Dempster-Shafer (DS) theory of

evidence. By allowing the representation of both imprecision and

uncertainty, evidence theory appears as a more flexible and general

approach compared to the Bayesian theory.

The two notions of uncertainty and imprecision are distinct ones

and they must be clearly define. On one hand, the uncertainty

represents the belief or the doubt we have on the existence or on

the validity of a data. This uncertainty comes from the reliability

of the observation made by the system: this observation can be

uncertain or erroneous. On the other hand, the imprecision express

the fact that we do not have enough knowledge on the datum, thus

we describe it with vague terms but its realization is sure. The

imprecision results from unavoidable imperfections of the sensors

and of the environment map, i.e. the imprecision represents the
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error associated to the measurement of a value.

In order to take into account the imprecision and the uncertainty

of the respiratory signals, we propose the use of the evidence

theory which is well suited to treat such imperfection data.

Moreover, this theory provides combination tools to merge data

issued from several sources (different respiratory acquisitions)

while taking into account their complementarity, their redundancy

and their possible opposition (conflict information). Therefore, this

theory is convenient to a multi-sources segmentation approach [4].

Our segmentation scheme is based on the use of evidence

theory. One of its characteristics is to use the fuzzy theory to

modelize and quantify the imprecision degree presented in the data.

In particular, we show that this modelization, used in the mass

function definition, increases the performance of the segmentation

scheme.

This paper is divided as follows. In section II, we present

the main aspects of evidence theory. We modelize, in section

III, the imprecision degree presented in the signal. In section

IV we describe the evidential scheme. In section V, we present

segmentation results on a synthetic signal and then on a biological

signal.

II. EVIDENCE THEORY

DS Theory is a mathematical theory of evidence. In a finite

discrete space, DS theory can be interpreted as a generalization

of probability theory where probabilities are assigned to sets as

opposed to mutually exclusive singletons. In traditional probability

theory, evidence is associated with only one possible event (or

hypothesis) [5]. In DS theory, evidence can be associated with

multiple possible events, e.g., sets of events. One of the most

important features of DS theory is that the model is designed to

cope with varying levels of precision regarding the information and

no further assumptions are needed to represent the information. It

also allows for the direct representation of uncertainty of system

responses where an imprecise input can be characterized by a set

or an interval and the resulting output is a set or an interval.

A. The mass function

We suppose the definition of a set of hypotheses Ω called frame

of discernment, defined as follows:

Ω = {H1, H2, ..., HN}

It is composed of N exhaustive and exclusive hypotheses Hj , j =
1..N . From the frame of discernment, let 2Ω be the power set

composed with the 2N propositions A of Ω :

2Ω = {∅, {H1}, {H2}, ..., {HN}, {H1, H2}, ..., Ω}
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The DS evidence theory provides a representation of both im-

precision and uncertainty through the definition of two functions:

plausibility (P ls) and belief (Bel), which are both derived from a

mass function (m) where m is defined for every element A of 2Ω,

such that the mass value m(A) belongs to the [0, 1] interval:

m :







m(∅) = 0
∑

A⊂2Ω

m(A) = 1

where ∅ is the empty set.

The belief and plausibility functions, derived from m, are respec-

tively defined from 2Ω to [0, 1]:

Bel(A) =
∑

A⊂2Ω,B⊆A

m(B) (1)

P ls(A) =
∑

A⊂2Ω,B∩A6=∅

m(B) (2)

In the case of Bayes theory, uncertainty about an event is

measured by a single value (probability) and imprecision related

to uncertainty measurement is assumed to be null. In the case of

DS theory, the belief value of hypothesis A may be interpreted as

the minimum uncertainty value about A, and its plausibility value

may be interpreted as the maximum uncertainty value of A.

B. Belief attenuation

The mass function m models the piece of evidence brought by

a source of information on the different hypotheses of 2Ω. When

this source is considered as imprecise or not completely reliable,

the confidence in this source can be attenuated by a factor α and

a derived belief structure mα is then defined by:

mαA = αm(A)∀A ∈ 2Ω,

mαΩ = 1− α + αm(Ω). (3)

C. Combination

In the case of segmentation problems dealing with uncertain and

imprecise data, it is often interesting to aggregate the information

coming from different sources in order to obtain more relevant

information. Evidence theory provides reliable tools to combine the

knowledge given by different sources. The obtained information is

the synthesis of all sources. Thus, the decision process is more

confident because it takes into account the whole information of

the sources, partially redundant and complementary. The orthog-

onal rule also called Dempster’s rule of combination is the first

combination defined within the framework of evidence theory. Let

us denote m1,...,mL , L masses of belief coming from L distinct

sources. The belief function m resulting from the combination of

the L sources by means of Dempster’s combination rule is defined

by:

m(A) = m1 ⊕m2 ⊕ ...⊕mL(A) (4)

where ⊕ is defined by:

m1 ⊕m2(A) =
1

1−K

∑

B
⋂

C=A

m1(B).m2(C) (5)

and

K =
∑

B
⋂

C=∅

m1(B).m2(C) (6)

K is often interpreted as a measure of conflict between the different

sources and is introduced as a normalization factor. The larger is

K, the more the sources are conflicting and the less sense has

their combination. The factor K indicates the amount of evidential

conflict. If K = 0, this shows complete compatibility, and if 0 <
K < 1, it shows partial compatibility. Finally, the orthogonal sum
does not exist when K = 1. In this case, the sources are totally

contradictory, and it is no longer possible to combine them.

D. Decision

Generally, for most applications, the decision that have to be

taken is to choose a simple hypothesis. The authors of [6] propose

a decision rule based on a probability function called pignistic

probability function defined by:

BetP (Hi) =
∑

Hi∈A

m(A)

card(A)
(7)

Then, the decision is made according to the MAP estimator.

III. IMPRECISION QUANTIFICATION

In this section we present some cases where the imprecision is

important, and we describe the theory used to modelize and quantify

such imprecision.

A. Hypothesis description

Let us denote Pi,l(Hj/Yi), l = 1..L, j = 1..N , i = 1...M , the

posterior probability of the class (Hj) given the observation vector
Yi; where M denotes the number of respiratory signal acquisition

modes, L the observed signal length and N the number of classes

present in the signal. We can distinguish three situations (or three

hypothesis) where the imprecision is important:

• Hyp1 : When the probabilities {Pi,l(Hj/Yi)}, j = 1...N are

too close. Let us take the extreme case where we have two

classes and pi,l(H1/Yi) = 0.5 and pi,l(H2/Yi) = 0.5. The
imprecision in this case is so high that an arbitrary affectation

of this sample to unique class H1 or H2 has no justification.

• Hyp2 : In order to regularize the fusion results, we are

interested in the zones of transition. Indeed, we assume that

the more the transition from a class to the other one, within the

same mode, is abrupt, the more the imprecision on the data

is important. So, we define a neighborhood V (l) for every

sample of the signal in the position l to be able to compare

the probabilities {Pi,l(Hj/Yi)}, l ∈ V (l).
• Hyp3 : We assume that more the probabilities

{Pi,l(Hj/Yi)}, i = 1..M are close more the imprecision in

the data is small. In case these probabilities are very different

the conflict between the different sources is important. This

is based on the assumption that the higher is the conflict, the

higher is the imprecision.

B. Hypothesis modelization

These hypothesis are defined to quantify the degree of the

imprecision in the data which may be modelized using the fuzzy

approach. This is based on the assumption that the concept of the

imprecision is an ambiguous concept, i.e, all the data are considered
as imprecise with a certain degree of membership in this fuzzy set

denoted Ein : the imprecise data set. Fuzzy set is defined as a

collection of ordered pairs of element and its degree of membership

(from interval [0, 1]) to the set. The degree of membership denotes

how much the element belongs to the set. In our case, it means how

much the coefficient with specific posterior probability and given

those hypothesis is imprecise. For transform of the certain to fuzzy
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domain, an S membership function f was used. The expression

of the proposed f is given by Eq. 8. The range [a, c] is called

the fuzzy region. Therefore, to find the degree of imprecision µi,l

of each coefficient Yi(l), it is sufficient to define a membership

function for every hypothesis, then to choose an operator of fusion.

The average operator will be used as a fusion operator.

f(x) =























0 x ≤ a
(x−a)2

(b−a)(c−a)
a ≤ x ≤ b

1− (x−c)2

(c−b)(c−a)
b ≤ x ≤ c

1 otherwise

(8)

Where a ≤ b ≤ c.

• The modelization of Hyp1 requires the definition of a mem-

bership degree µHY P1,i,l. To simplify this task, we only

consider both classes having the biggest posterior probability

{Pi,l(H1), Pi,l(H2)}. Generally, we measure the distance

between two variables means calculating their report. However,

to avoid the division by zero and to control the report result, it

is better to manipulate the exponential of these two variables.

The proposed µHY P1,i,l is given by:

µHY P1,i,l = fhyp1 (exp [Pi,l(H1)] /exp [Pi,l(H2)]) (9)

Where fhyp1 is the S function used for the Hyp1 modeliza-

tion.

• The modelization of Hyp2 requires the definition of a mem-

bership degree µHY P2,i,l,j,k of Ein given the neighborhood

V (l). This is means the exponential report of the smallest and
the biggest probability of the couple (Pi,l(Hj), Pi,k(Hj)) in
order to have a report < 1. The proposed membership function
is given then by:

µHY P2,i,l,j,k = fhyp2(
exp

[

min
(

Pi,l(Hj), Pi,k(Hj)
)]

exp
[

max
(

Pi,l(Hj), Pi,k(Hj)
)] ) (10)

where k ∈ V (l) and fhyp2 is the S function used for the

Hyp2 modelization.

• The modelization of Hyp3 requires the definition of a mem-

bership degree µHY P3,l,j of Ein (we present here the case of

two classes). The proposed membership function is given by:

µHY P3,l,j = fhyp3(
exp [min (P1,l(Hj), P2,l(Hj))]

exp [max (P1,l(Hj), P2,l(Hj))]
) (11)

where fhyp3 is the S function used for the Hyp3modelization.

Finally, the expression of µi,l is given by:

µi,l =

µHY P1,i,l +
∑

k=1..K,j=1..N

µHY P2,i,l,j,k +
∑

j=1..N

µHY P3,j,l

1 + K.N + N
(12)

Where K = card(V (l)).

IV. FUSION SCHEME

Now, we consider the mass function modelization problem. We

will use the probabilities Pi,l(Hj/Yi) and the membership function
µi,l to define the mass function m(i, l) for each sample Y (i, l) by
respecting a certain number of properties such as the coherence

with the bayesian model in case of imprecision absence. We can

distinguish two extreme situations. The first is characterized by

the total imprecision absence (µi,l = 0), in this case only the

mass functions of the simple classes are non-zero. The second

situation is characterized by the total ignorance (µi,l = 1): all the

mass functions of the simple class are null. The expression of the

proposed non-normalized mass function m(i, l) is given by:

1-If N=2;

m{i,l}({H1}) = (1− µi,l).Pi,l(H1/Yi)

m{i,l}({H2}) = (1− µi,l).Pi,l(H2/Yi)

m{i,l}({H1, H2}) = µi,l.max(pi,l(H1/Yi), Pi,l(H2/Yi)) (13)

2- If N > 2

m{i,l}({Hj}) = (1− µi,l).Pi,l(Hj/Yi) j = 1..N

m{i,l}({Hj , Hk}) = µi,l.max(Pi,l(H1/Yi), Pi,l(H2/Yi))

j, k = 1..N and j 6= k

m{i,l}({Ω}) = µi(l).max(Pi,l(H1)/Yi, ..., Pi,l(HN/Yi)) (14)

The fusion algorithm is as follows:

Algorithm 1 fusion scheme

Calculate the membership function µi,l (12)

Calculate the mass function m(i, l) (14)
Calculate the combined mass function m (4)

Decision rule (7)

V. FUSION RESULTS AND DISCUSSION

This part describes some segmentation results obtained with the

proposed segmentation scheme. This method was applied both on

synthetic signal designed to fit the characteristics of the wavelet

packets respiratory signal assumed to follow a zeros mean gener-

alized Gaussian GG distribution [7] and real signal given by Pr

E.Andrès (Hopitaux Universitaire de Strasbourg).

A. Fusion results on synthetic data

The main advantage of using simulated data is that we perfectly

know the characteristics of the data such as the class membership of

each coefficient. For this, we generate a multi-modes GG sequence

(M = 2, L = 600, N = 4) shown in Fig. 1. The different values

of hyperparameters of the multi-modes GG are presented in Tab. I

. The posterior probabilities Pi,l(Hj/Yi) were calculated using the
method presented in [7].

TABLE I

VALUES OF SHAPE PARAMETERS α AND VARIANCES σ2 OF THE FOUR

CLASSES IN EACH MODE.
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Fig. 1. The synthetic signal used for the simulation.

In order to emphasize the benefit of the proposed approach and

particulary the use of fuzzy theory to quantify the imprecision

degree presented in the data, two different segmentation methods

were applied to the synthetic signal presented in Fig. 1 : a

respiratory sounds segmentation method using probabilistic fusion

which is based on HMC (Hidden Markov Chain) [7] (a probabilistic

scheme) denoted (M1) and our segmentation method (a DS scheme)

denoted (M2). The Tab. II presents the segmentation error rate for

different values of SNR. We can easily observed the advantage

of using an evidential fusion scheme comparing to a probabilistic

fusion scheme. The segmentation error rates results are confirmed

by the visual results presented in Fig. 2.

SNR 9dB 4dB 0dB -4dB

M1 4.55% 7.35% 11.57% 15.66%

M2 2.66% 4.71% 7.88% 11.36%

TABLE II

ERROR RATES ON THE SYNTHETIC DATA.

Fig. 2. (a) ground truth, (b) segmentation result using M1, (c) segmentation
result using M2.

B. Fusion results on real data

Now, we consider the problem of the real signal segmentation.

In our case, it corresponds to the asthma sound. Firstly, we

calculate the wavelet packet transformation of the signal to

have a higher flexibility in terms of scalability in resolution and

distortion. Then, we apply our segmentation method and the M1

method to the asthma wavelet packet coefficients. We obtain the

segmentation results presented in Fig. 3. The Wheeze wavelet

packet coefficients are presented in Fig. 3(a) and (b) with dotted

lines. As one can see, only our method detected the presence of

the wheeze. This detection allows us to study the characteristics

of the wheezing sound such as its duration. Indeed, the parameter

that best correlates with other clinical indices of asthma severity is

wheeze duration [8].

The segmentation result shows that the proposed evidential fusion

scheme using both the imprecision and the uncertainty on the data

increases the effectiveness of the segmentation while segmentation

result of M1 are effected, in part, by the regularizing aspect of the

HMC model, which tends to drown some significant details of the

signal.

Fig. 3. (a) asthma coefficients mode 1, (b) asthma coefficients mode 2,
(c) segmentation result using our segmentation scheme, (d) segmentation
result using M1.

VI. CONCLUSION

In this paper, we proposed a new evidential segmentation scheme

in order to detect the presence of wheeze in the respiratory signal.

This method combined the modeling of the knowledge by means

of the evidence theory and integrates the fuzzy theory to quantify

the imprecision degree presented in the signal. This approach is

theorically validated in this paper, and we currently work on future

development on a raw biological signal data base in collaboration

with physicians from Hopitaux Universitaires de Strasbourg.
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