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Abstract— In spite of the advancement and proliferation of
cardiovascular imaging data, the rate of deaths due to unpre-
dicted heart attack remains high. Thus, it becomes imperative
to develop novel computational tools to mine quantitative pa-
rameters from imaging data for early detection and diagnosis of
asymptomatic cardiovascular disease. In this paper, we present
our progress towards developing a computational framework to
mine cardiac imaging data and provide quantitative measures
for developing a new risk assessment method. Specifically, we
present computational methods developed for the detection of
coronary calcification and segmentation of thoracic aorta in
non-contrast cardiac computed tomography, and detection of
neovessels in plaques in intravascular ultrasound imaging data.

I. INTRODUCTION

The National Heart Lung and Blood Institute reported
that 872,000 deaths or 36% of all deaths in the United
States were due to cardiovascular disease in 2004 [1].
Approximately 50% of heart attack related deaths occur
in people with no prior symptoms. Hence, sudden heart
attack remains the number one cause of death in the US.
Unpredicted heart attacks account for the majority of the
$280 billion burden of cardiovascular diseases. The field
of cardiology has witnessed a major paradigm shift in its
determination of a patient’s risk of coronary artery disease.
Today, cardiovascular specialists know that heart attacks
are caused by inflammation of the coronary arteries and
thrombotic complications of vulnerable plaques. As a result,
the discovery of vulnerable plaque has recently evolved into
the definition of “vulnerable patient”. A vulnerable patient
is defined as a person with more than a 10% likelihood of
having a heart attack in the next 12 months. Over 45 world
leaders in cardiology have collectively introduced the field
of vulnerable patient detection as defining the new era in
preventive cardiology [2], [3].

Existing cardiovascular risk scoring methods do not take
into account the wealth of information that is available in
imaging data. The reason for this is two-fold: 1) there is a
dearth of automatic techniques to mine the data for required
information, and 2) validation in large epidemiological stud-
ies is needed to determine which type of information will
offer additive predictive value. Our long-term vision is to
contribute to the development of quantitative methods to
assess cumulative risk of vulnerable patients by developing
new techniques to mine additional information from imaging
data.
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Several studies have established that the presence of cal-
cified coronary plaque as detected by computed tomography
(CT) has a significant predictive value for coronary artery
disease in both asymptomatic and symptomatic patients,
and is associated with future cardiac events [4], [5], [6],
[7]. Coronary calcification burden has been reported to be
associated with cardiovascular risk. Currently, an observer
must identify the coronary calcifications among a set of
candidate regions (obtained by thresholding and connected
component labeling) by clicking on them. To relieve the
observer of such a labor-intensive task, an automated tool
is needed that can detect and quantify the coronary calcifi-
cations. However, the diverse and heterogeneous nature of
the candidate regions poses a significant challenge to the
accurate detection of coronary calcifications. Studies have
also shown that calcification of the thoracic aorta, aortic arch
and aortic valve are associated with increased risk of cardio-
vascular disease [8], [9]. Thoracic aorta calcification can be
measured from standard cardiac CAC scans without requiring
any additional scanning, which is especially advantageous
for retrospective studies. However, there are no automated
methods that address the problem of aorta segmentation in
non-contrast cardiac CT scans. This may be attributed to the
nature of the non-contrast CT imaging, which suffers from
lack of contrast between blood pool regions, muscle walls
and pericardial fat, rendering the aorta segmentation quite a
challenging task.

Furthermore, vasa vasorum (VV) neovascularization on
the plaque has been identified as a common feature of inflam-
mation [10] and has being defined as a plaque vulnerability
index. Intravascular ultrasound (IVUS) is currently the gold-
standard technique for assessing the morphology of blood
vessels and atherosclerotic plaques in vivo. IVUS combined
with contrast-enhancing agents as blood tracer has been used
for the detection of blood perfusion within the vessel. The
method involves injecting high-echogenic microbubbles of
size similar to red blood cells into the blood flow while
monitoring with IVUS. If these microbubbles are found
beyond the lumen border, this could be an indication of
microcirculation due to VV. However, manually perform-
ing temporal analysis of variations in wall echogenicity is
not feasible. Computer-aided techniques may be a natural
solution to this problem, though they present their own
difficulties.

II. METHODS
A. Computed Tomography

We have developed a novel two-stage hierarchical
classification-based method to detect coronary calcifications
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in non-contrast cardiac CT scans [11]. In this classification
problem, the positive class is composed of the coronary
calcifications, while the negative class consists of the aortic
calcifications, image noise, and metal implants, if any. Fig-
ure 1 depicts the typical candidate regions for the coronary
and aortic calcifications as well as the image noise. In the first
stage, the arterial (the coronary and the aortic) calcifications
are distinguished from other highly dense regions present
within the heart region. In the second stage, the coronary
calcifications are distinguished from the aortic calcifications.
We investigated the possibility of such separation without
requiring the segmentation of the aorta. At each stage of
the hierarchy, we constructed an ensemble of classifiers
whose decisions are combined to obtain the final decision
for that stage. Each classifier in the ensemble was designed
to accommodate asymmetric penalty costs for different types
of errors.

Fig. 1. CT image of a heart depicting typical candidates from the positive
and the negative class - coronary calcifications in LAD (A), RCA (B), aorta
(C), and image noise (D,E).

Though the coronary calcifications appear as high-density
structures in the non-contrast CT scans, it is inherently diffi-
cult to identify them automatically. The difficulty arises be-
cause of the presence of other similar high-density structures,
including the non-coronary calcifications and the absence
of any contrast agent to identify the blood vessels. It is
apparent that the choice of features plays an important role
in solving this problem. We have investigated various clues
that a human observer uses to manually annotate the coronary
calcifications in the CT scans. Thus, we have computed the
relative location of the calcifications with respect to a heart-
centered coordinate system and used the neighboring region
of the calcifications to better characterize their properties for
discrimination.

Our results demonstrated the feasibility of an automated
coronary calcium detection system using a classification-
based method and that a heart-centered coordinate system
provides a compact representation for the spatial location
of the coronary arteries, as opposed to the absolute image
coordinate system. Initially, we used a simple bounding box-
based coordinate system to represent the location of the
calcifications. Development of a more compact frame of
reference using a local heart-centered coordinate system,

as recently proposed by our group [12], which is aligned
in terms of translation, scale, and rotation, could further
improve the accuracy of the calcification detection system.
It has also been shown that the texture features character-
ize the coronary calcifications well, and the neighborhood
region of the coronary calcium plays an important role
in distinguishing coronary calcium from other candidate
regions. Thus, the inclusion of the neighborhood region in the
candidate region in order to compute the region-based texture
features significantly improved the sensitivity of the system.
Our method achieved sensitivity of 92.07% at the expense
of 4.65 false positives per scan. Also, using an ensemble
of multiple classifiers further reduced the false positives
occurring due to image noise. Nevertheless, there is a high
percentage of misclassification errors for the calcifications in
the aorta, left main artery and right coronary artery. These
misclassifications are due to the atomical variations in the
relative positions of the ascending aorta near the origin, the
left main artery and the proximal region of the right coronary
artery in different subjects.

To this end, we have developed a novel method for
segmentation of the thoracic aorta in non-contrast cardiac
CT images and posterior quantification of aortic calcified
plaque [13]. We used dynamic programming concepts to
reformulate the problems of localizing and segmenting the
thoracic aorta as optimal path detection problems constrained
by certain cost functions. Our method consisted of the
following steps. The first step was to locate the position and
estimate the size of the aorta in the thoracic CT scans. In
spite of heart dynamics, the aorta maintains its global tubular
shape with minor local deformations. Since the thoracic aorta
runs vertically, its appearance in axial slices approximates
a circular shape which can be extracted using the Hough
transform. However, the traditional approach of selecting the
Hough circle with global maximum votes does not always
correspond to the aorta (Fig. 2(b)). To overcome this issue,
we developed a method for aorta localization using a Hough
space as a medialness feature space and applying dynamic
programming on that space to find the points corresponding
to the center of the aorta in subsequent axial slices. The
dynamic programming method was applied on the Hough
spaces of subsequent axial slices to obtain a series of optimal
best-fit circles for the aorta (Fig. 2(c)). In the second step,
we used the estimated position and size of the aorta to detect
refined aortic boundary contours. Using a polar coordinate
system, the problem of finding the aortic boundary reduced
to horizontal boundary detection which could be efficiently
computed using the dynamic programming method. The
aortic boundary was detected by computing an optimal
horizontal path between the two ends of the polar image
(Fig. 2(d)).

B. Intravascular Ultrasound

We have developed a computer-aided technique which
allows IVUS contrast imaging to be accomplished with
standard, commercially-available IVUS systems and off-the-
shelf microbubble contrast agents (namely, those used for
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Fig. 2. (a) Original CT image, (b) aorta detected from global maximum
in Hough space, (c) aorta detected using dynamic programming in Hough
space, and (d) aorta boundary contour detected using dynamic programming.

echocardiographic purposes) [14], [15]. To this end, we have
developed a method for IVUS image stabilization which
enable the use of difference imaging to detect those changes
which occur in the IVUS imagery due to the perfusion of an
intravascularly-injected contrast agent into the plaque and
vessel wall. In particular, as IVUS imaging is performed
within the coronary arteries, image stabilization is required
for alleviating the relative motion between the heart and
the imaging catheter. The goal of image stabilization is to
be able to map the pixels in a region of interest in the
IVUS image from one frame to the next. Since multiple
sources of motion were present, we followed three steps
to detect perfusion: motion compensation, image subtraction
and deriving statistics from the resulting difference images
(Fig. 3(a)). If a single physiological region is mapped reliably
over time, changes in its appearance can be examined by
subtracting a pre-contrast baseline from a post-contrast image
of that region.

However, one of the limitations of this method was related
to the use of the cartesian B-mode representation of the IVUS
signal. This was a disadvantage because the transformation
to this representation results in loss of potentially valuable
information. To overcome these limitations, we investigated
the feasibility of detecting microbubbles in IVUS data by
acoustic characterization of the raw IVUS data using two
approaches based on one-class cost-sensitive learning [16].
In the first approach, we built a model for the microbubbles
from samples of microbubbles present in the lumen during
the contrast agent injection. In the second approach, we
detected the microbubbles as a change from baseline IVUS
data. For this, we built a model using random samples from

(a)

(b) (c) (d) (e)

Fig. 3. Top: (a) Flowchart of an analysis of a contrast-enhanced IVUS
sequence. From left to right - the original sequence, the sequence decimated
by gating, the contour-tracking step, and the difference imaging and overlay
of results. Bottom: Demonstration of registration between histology and
IVUS. (b) A stained histological image, (c) an IVUS image to which
the histology image is co-registered by manually defining corresponding
landmarks, (d) deformed histology image based on the landmarks, and
(e) the IVUS image highlighting the correspondence. Note the excellent
agreement of our analysis with the histology.

different tissues of the vessel extracted from frames before
the injection. The primary advantage of these approaches is
that we made use of the raw IVUS data, thus we did not lose
information contained in the radio frequency (RF) signal. The
second advantage is that by using one-class learning, we did
not need to provide “background” samples for building the
models. In our case this was important because, although
samples for microbubbles in lumen can be easily acquired
by manual annotations from an expert, the background can
consist of a wide variety of other imaged tissues. Thus,
obtaining samples for the other tissues may be difficult and
labor-intensive.

For the first approach, we obtained an average accuracy
of 99.17% on the detection of microbubbles on lumen and
91.67% on the classification of pre-injection frames as having
no microbubbles, with an average percentage of support
vectors less than 1% of the total training samples. Figure 4
depicts the classification results on frames during injection
and pre-injection. For the second approach, we obtained an
average accuracy of 89.65% on the detection of baseline
IVUS data and 96.78% on the classification of microbubbles
as change, with an average percentage of support vectors less
than 10% of the total number of samples used for training.
Figure 5 depicts the classification results on frames before
injection and during injection.

III. CONCLUSIONS

Our long-term goal is to develop a new risk assessment
index for an individual’s risk of a cardiovascular event. If
this score is to be used as predictors of a future adverse
event, they should provide the best representation of subclin-
ical information. This requires optimal use of all available
data. Currently, risk assessment tools do not use the wealth
of information available in the images. In this paper, we
presented our progress towards developing novel methods to
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Fig. 4. Classification results in (a) a frame with microbubbles in the
lumen and (b) an IVUS frame before injection. In both images, the red
color indicates the pixels classified as microbubbles and the green color
those classified as non-microbubbles.

(a) (b)

Fig. 5. Classification results in (a) an IVUS frame before injection and (b)
a frame with microbubbles in lumen. In both images, the red color indicates
the pixels classified as baseline IVUS and the green color those classified
as an anomaly.

mine information from CT and IVUS data to obtain coro-
nary calcium and blood perfusion indicators, respectively.
Our methods provided encouraging preliminary results, and
opened multiple avenues for future research to achieve the
final goal.
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