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Abstract- We have previously reported a new sparse 
neuroimaging method (i.e. VB-SCCD) using the L1-norm 
optimization technology to solve EEG inverse problems. The 
new method distinguishes itself from other reported L1-norm 
methods since it explores the sparseness in a transform domain 
rather than in the original source domain. In the present study, 
we conducted a Monte Carlo simulation study to compare the 
performance of VB-SCCD and other two popular L2-norm 
neuroimaging methods (i.e. wMNE and cLORETA) in 
reconstructing extended cortical neural electrical activations. 
Our simulation data suggests that the VB-SCCD method is able 
to reconstruct extended cortical sources with the overall high 
accuracy. It has significantly higher accuracy, less number of 
false alarms and less number of missing sources when studying 
complex brain activations (up to 5 simultaneous sources). This 
new sparse neuroimaging method is thus promising to have 
many valuable applications in neuroscience and neurology 
problems. It is also applicable to MEG neuroimaging. 
 
Keywords- sparse neuroimaging, sparseness, regularization, L1-
norm, transform domain, EEG, SCOP 
 

I. INTRODUCTION 
 

Mathematically, EEG inverse problems, which attempt to 
localize brain electrical activations from scalp measurable 
electrical signals (i.e. EEG), have no unique solutions and 
are highly ill-posed [1, 2]. Historically, favorable EEG 
inverse solutions in various conditions have been obtained 
by implementing different neural source models [2]. Among 
these neural source models, the cortical current density 
(CCD) source model [3] has been implemented through the 
segmentation of structural brain data from magnetic 
resonance imaging (MRI), and is widely used to study 
important problems in neuroscience and clinical neurology.  

The forward relationship between sources defined on the 
CCD model and EEG measurements can be described by a 
set of linear equations. This set of equations is highly 
underdetermined and its inverse solution is extremely 
sensitive to noise, which reflects the general characteristics 
of EEG inverse problems, i.e. non-uniqueness and ill-
conditioning. These linear equations are usually solved 
through regularization schemes, such as in the minimum 
norm estimate (MNE) method, which selects the current 
distribution that explains the measured data with the smallest 
Euclidean norm (L2-norm) of the current sources [4], and its 
variants [5-8]. Generally, L2-norm based MNE methods can 
explicitly formulate the process to obtain inverse solutions 
as linear operators, which significantly reduces the 
computational needs. However, L2-norm MNE methods 
suffer significantly from their low spatial resolutions [8, 9]. 
In order to reconstruct sparse and compact neural sources, 

L1-norm based MNE methods have been explored [10-13]. 
While L2-norm MNE methods produce over-smooth inverse 
solutions, L1-norm MNE methods, as those reported in 
literatures [10-13], produce over-focused inverse solutions, 
which usually only involves activations from a single 
element on the CCD model. Thus both L1- and L2-norm 
MNE methods have their limitations in reconstructing 
spatially extended cortical sources and estimating their 
extents on the cortical surface. 

Recently, we have reported a new L1-norm neuroimaging 
method [9], i.e. the variation-based sparse cortical current 
density (VB-SCCD) method. In principle, the VB-SCCD 
method is distinguished from MNE methods, which utilizes 
the concept of sparse neuroimaging. The objective functions 
in sparse neuroimaging are defined to represent cortical 
current density distribution with minimal non-zero 
coefficients (sparseness). The variation map of cortical 
current densities is used in VS-SCCD to characterize the 
sparseness on boundaries between active cortical regions 
(sources) and inactive cortical regions (no sources). The L1-
norm optimization algorithm is then used to reconstruct 
these non-zero coefficients in variation maps and, thus, to 
recover cortical current density distributions. 

In the present work we conducted a comparison study 
between two L2-norm methods (i.e. weighted MNE (wMNE) 
[7] and cortical low resolution electromagnetic tomography 
(cLORETA)) and the L1-norm VB-SCCD method. Their 
performance in reconstructing extended cortical sources was 
evaluated using metrics, i.e. receiver operation curve (ROC) 
and area under curve (AUC), from the detection theory [15], 
with randomly simulated extended cortical sources (i.e. 
Monte Carlo study [16]). We studied conditions with 1, 2, 
and 5 randomly located cortical sources with high-density 
EEG measurements (i.e. 120 channels). Our present results 
show the performance of VB-SCCD is significantly better 
than wMNE and cLORETA in reconstructing extended 
cortical sources. Previously reported other L1-norm MNE 
methods were not considered in this comparison study since 
their solutions are over-focused and not suitable to recover 
extents of spatially distributed sources. 

 
II. METHOD 

 
A. L2-norm and L1-norm Neuroimaging Methods 
 

The regularization scheme used in wMNE can be 
expressed as 

βφ <−
22

min sAtosubjectsW  (1) 

where β  is the regularization parameter. Here, W  is an 
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NN ×  diagonal matrix with each diagonal element defined 

as 
i

T
iii AAW =  to compensate the bias due to the source 

depth [5]. The cLORETA method [14] can be expressed as 
βφ <−

22
min sAtosubjectsLW  (2) 

Here, L  is the two-dimensional discrete spatial Laplacian 
operator defined over the cortical surface. By minimizing the 
high spatial frequency components, cLORETA maximizes 
the chance to produce smooth source reconstructions. 

The new sparse neuroimaging method (i.e. VB-SCCD) 
explores the sparseness in the transform domain (i.e. the 
variation map), instead of the original source domain, which 
can only produce over-focused EEG inverse solutions [10-
13]. The regularization scheme in VB-SCCD could be 
mathematically expressed as 

βφ <−
21

min sAtosubjectsV  (3) 

where V  is a matrix operator to get the variation map of 
cortical current density distributions. The variation vector is 
thus defined as sV . Each element in this variation vector 
represents a coefficient within the variation map over a 
triangular edge in the CCD model and its value indicates the 
current density difference between two triangular elements 
sharing the same edge (see [9] for details). If the cortical 
current density within each active cortical source is close to 
uniform or can be approximated with uniform distributions, 
non-zero coefficients are expected to largely happen on 
boundaries (the sparseness), and can be identified by 
minimizing the L1-norm of current density variation maps. 

The regularization parameter β  in equations (1), (2), and 
(3) can be estimated by applying the discrepancy principle 
[17]. We choose it high enough so that the probability of 

β≥
2

n , where sAn −=φ , is small. When noises are 

Gaussian white, ( ) 2

2
2/1 nσ , where 2σ  denotes the variance, 

has the 
mχ  distribution with M degrees of freedom, i.e. 

( ) 22

2
2 ~/1 mn χσ . In practice, the upper bound of 

2
n , i.e. β , 

is selected such that the confidence interval [ ]β,0  integrates 
to a 0.99 probability [13]. While the GWN is not a good 
approximation of real noise, other noise models can be 
similarly utilized if the distributions of noise are known or 
can be estimated. 
 
B. Solvers for wMNE, cLORETA and VB-SCCD 
 

 The optimization problems stated in equations (1)-(3) 
belong to the convex optimization problems, which were 
solved by the second order cone programming (SOCP) 
technique [18]. The SOCP has efficient globally convergent 
solver known as the Interior Point Methods (IPM). The IPM 
method has been implemented in a MATLAB package 
named SeDuMi [19]. In order to be solved, every problem 
must be formatted into the framework of SOCP below in 
either the primal form or the dual form: 

coneLorentzx
bxBtosubject

xcT

∈
=

min
            or 

coneLorentzxBctosubject
xb

T

T

∈−

max   (4) 

( ){ }ijuuuuRRuuuconeLorentz pji
n

p ≠≥×∈= −

21
1

21 ,,,,,,: KKK  

where [ ]Tpxxxx ,,, 21 K=  is the solution vector for a SOCP 

problem (not the source vector s ). b  and c  are the 
coefficient vectors and B  is the coefficient matrix, which 
were defined specifically in each given problem. Here, we 
used the dual form to convert (1)-(3) into (5)-(6) for wMNE, 
cLORETA, and VB-SCCD, respectively, by introducing 
certain intermediate variables: 
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Here the coefficient vector b  and the solution vector x  
have been explicitly defined by relating to the source vector 
s  and introduced intermediate variables z , h , and t  in (5) 
and (6) or t  in (7). The vector c  and the matrix B  in (4) 
could be explicitly expressed by reformatting the nonlinear 
constraints on the measurement errors, i.e. β≤

2
z , and 

those related to h . SeDuMi also introduces so-called free 
variables [19], which are not in the standard dual form of a 
SOCP problem, to handle linear constraints in (5)-(7) and all 
of these linear constraints are formatted into 0=− xBc T

ll  
(the subscript l  here indicates coefficients in the vector and 
matrix for linear constraints). The intermediate variable t  in 
(5) and (6) is a scalar representing the weighted L2-norm of 
vectors. Each element of the vector t  in (7) represents the 
absolute difference of current densities at a pair of 
neighboring elements, where 

,*iV  is ith row of V  in (3). 
Since the size of these optimization problems is large (over 
60000 elements in the source space as discussed below), the 
computational time for each problem discussion in (5)-(7) 
ranges from about half minutes to about fifteen minutes 
(depending on the number of simulated sources). 
  
C. Simulation Protocol 
 

The cortical surface was triangulated into a high-
resolution mesh with a total of 67864 triangles (triangle area:  
3.52 ± 1.47 mm2 (mean ± SD)) to build the CCD model. 
Cortical sources were generated by selecting a seed 
triangular voxel on the cortical mesh and gradually growing 
into patches by iteratively adding neighboring elements. The 
dipole moment on each triangle was computed as the 
multiplication of the individual triangular area and the dipole 
moment density (assume 100 pAm/mm2). Different brain 
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and comparison. Furthermore, some isolated outlier 
elements on the CCD model with extremely large values 
appeared in both results from wMNE and cLORETA. These 
errors are possibly due to numerical modeling and 
calculations as discussed in [9], which were manually 
removed in order to show the valuable information from 
wMNE and cLORETA. Note that there were no observations 
of such outlier activity from VB-SCCD. 

In Fig. 2, it shows that the wMNE method is able to locate 
some sources when the brain activation is quite complicated 
(i.e. 5 sources), meanwhile it has significant problems on 
false alarms (e.g. example 3) and missing sources (e.g. 
example 2, source #2 and source #5). The cLORETA 
method has the similar problems as shown in Fig. 3 (false 
alarms: all examples; missing sources: example 2, source #5). 
The performance of VB-SCCD is obviously better than both 
wMNE and cLORETA. It has no missing sources in these 
three examples and no significant false alarms away from 
actually simulated sources. It is also worth to point out there 
are limitations from the VB-SCCD method too. First, when 
there are sources close to each other, it is difficult to be 
distinguished (e.g. example 3, source 2 and source 3). 
Second, the spatial extent of each reconstructed source 
seems larger than the simulated extent. Since we only used 
the simple thresholding technique to remove background 
activity, these two problems might be partially reduced with 
more proper thresholding techniques or choosing more 
suitable thresholds. 
 

IV. DISCUSSION 
 

In the present study, we conducted a simulation study 
using the Monte Carlo approach, in order to compare the 
performance of one L1-norm neuroimaging method (i.e. VB-
SCCD) and other two L2-norm neuroimaging methods (i.e. 
wMNE and cLORETA) in reconstructing extended cortical 
neural electrical activations. From our simulation data, it 
suggests that the VB-SCCD L1-norm method is able to 
reconstruct extended cortical sources with the overall high 
accuracy evaluated by the metric AUC. The VB-SCCD L1-
norm method is significantly different from previous 
reported L1-norm methods [10-13], which are only able to 
produce and reconstruct focal brain activations even in 
conditions focal activations are not the case. By directly 
visualizing reconstructed cortical current densities from 
wMNE, cLORETA, and VB-SCCD, the distributions from 
VB-SCCD obviously have significantly less number of false 
alarms and missing sources. The examples shown in Fig. 4 
in reconstructing 5 sources at the same time and the overall 
strong data in Whisker plots for VB-SCCD all suggest that 
this new method is able to solve much more complex EEG 
inverse problems, which cannot be solved by wMNE and 
cLORETA with satisfactory results. 

The difference between wMNE/cLORETA and VB-SCCD 
seems more significant as shown in Figs. 2-4 than data 
plotted in Fig. 1. This might suggest the relatively low 
sensitivity of the AUC metric in evaluating the performance 
of neuroimaging methods, which might need further 
research. How we can get the accurate estimation of each 

source’s cortical extent from distributions produced by VB-
SCCD (possibly by integrating with thresholding techniques) 
to obtain more neuroinformatics other than source 
localizations will be another interesting topic, which can 
take advantage of inverse solutions from VB-SCCD. 

In summary, our newly reported sparse neuroimaging 
method by exploring the sparseness in the variation map of 
cortical current densities has a significantly improved 
performance in reconstructing more complex brain 
activations (up to five as investigated in the current study). It 
is promising to have many valuable applications in 
neuroscience and neurology problems. 
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