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Abstract— We propose a novel method, fMRI-Informed Re-
gional Estimation (FIRE), which utilizes information from
fMRI in E/MEG source reconstruction. FIRE takes advantage
of the spatial alignment between the neural and the vascular
activities, while allowing for substantial differences in their
dynamics. Furthermore, with the regional approach, FIRE can
be efficiently applied to a dense grid of sources. Inspection
of our optimization procedure reveals that FIRE is related
to the re-weighted minimum-norm algorithms, the difference
being that the weights in the proposed approach are computed
from both the current estimates and fMRI data. Analysis
of both simulated and human fMRI-MEG data shows that
FIRE reduces the ambiguities in source localization present
in the minimum-norm estimates. Comparisons with several
joint fMRI-E/MEG algorithms demonstrate robustness of FIRE
in the presence of sources silent to either fMRI or E/MEG
measurements.

I. INTRODUCTION

The principal difficulty in interpreting Electroencephalog-

raphy (EEG) and magnetoencephalography (MEG) data

stems from the ill-posed electromagnetic inverse problem:

infinitely many spatial current patterns give rise to identical

measurements [8]. Therefore, additional assumptions must

be incorporated into the reconstruction process to obtain a

unique estimate [2].

In addition to the general assumptions about the spatial

current patterns such as minimum energy (or ℓ2-norm),

specific prior knowledge about activation locations can be

obtained from other imaging modalities. Among them, func-

tional Magnetic Resonance Imaging (fMRI) provides the

most relevant information for the reconstruction due to its

good spatial resolution. fMRI measures the hemodynamic

activity, which indirectly reflects the neural activity measured

by E/MEG. Extensive studies of neurovascular coupling have

demonstrated similarity in spatial patterns of these two types

of activations [11]. However, the timecourses of the neural

and the vascular activities differ substantially, and their

exact relationship has yet to be characterized in full [12].

In addition to the differences in their physiological origins,

E/MEG and fMRI have different sensitivity characteristics.

For example, a brief transient neural activity may be difficult

to detect in fMRI while sustained weak neural activity may

lead to relatively strong fMRI signals but might have a poor

signal-to-noise ratio in E/MEG.
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The most straightforward way to incorporate fMRI in-

formation into E/MEG inverse estimation is the fMRI-

weighted Minimum-Norm Estimation (fMNE) [1], [10]. This

method uses a thresholded Statistical Parametric Map (SPM)

from fMRI analysis to construct weights for the standard

Minimum-Norm Estimation (MNE), leading to significant

improvements when the SPM is accurate. However, the

weights depend on arbitrary choices of the threshold and

weighting parameters. Moreover, these weights are assumed

to be time independent causing excessive bias in the es-

timated source timecourses. Sato et al. [15] combined the

Automatic Relevance Determination (ARD) framework and

fMNE to achieve more focal estimates. In this method, which

we will refer to as fARD, the parameters of a hyper-prior

are set based on the thresholded SPM. In addition to the

arbitrary choice of the threshold similar to that in fMNE, the

estimates computed via fARD are often unstable, especially

in the regions where the vascular activity is weak.

Here, we propose a novel method, the fMRI-Informed

Regional Estimation (FIRE), to improve on the accuracy of

the E/MEG source estimates. Since the relationship between

the dynamics of the evoked neural and vascular signals is

largely unknown, we only model the similarity of spatial

patterns of the two processes, as opposed to the Kalman-filter

approach in [5]. Furthermore, we expect that the shape of the

activation timecourses varies across brain regions, especially

for the neural activation timecourses. To account for this

fact, FIRE treats the temporal dynamics in different brain

regions independently. We assume the shape of the activation

timecourses to be constant within a brain region, modulated

by a set of location-specific latent variables. The regions are

chosen based on a subject-specific cortical parcellation [6].

Handling the temporal dynamics of the two types of activities

separately while exploring their common spatial pattern helps

to preserve the temporal resolution of E/MEG and to achieve

accurate source localization.

Both our activation timecourse model and the choice of

brain regions in FIRE are similar to those employed in recent

work by Daunizeau et al. [3]. However, Daunizeau et al. aim

to symmetrically infer brain activities visible in either EEG

or fMRI data, resulting in an extra random variable to model

the vascular activity. Furthermore, due to the complexity of

this model, the estimation is limited to source space that

substantially coarser than the spatial resolution of fMRI.

Instead of aiming at a symmetrical inference, we focus on

the estimation of current sources. We incorporate the fMRI

information to reduce ambiguities in source localization

usually present in E/MEG source estimation.

To fit the model to the data, we employ the coordinate

descent method, alternating between the estimation of current
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Fig. 1. Graphical interpretation of FIRE. The hidden activity z models
the neurovascular coupling relation. The hidden current source distribution
J is measured by E/MEG, producing observation Y. F denotes fMRI
measurements. Vectors u and v are the unknown neural and vascular
waveforms in a certain brain region, respectively. The inner plate represents
Nk vertices in region k; the outer plate represents K regions. The bottom
left and the bottom right plates represent TJ and TF time points in the
neural and the vascular measurements, respectively.

sources and of other model parameters. This iterative update

scheme is similar to the re-weighted MNE methods such

as FOCal Underdetermined System Solver (FOCUSS) [7].

In contrast to the re-weighted MNE, in our method the

weights are jointly determined using both the estimated

neural activity and the vascular activity measured by fMRI.

Moreover, the estimates at different time points influence

each other.

In the following, we first discuss the model underlying

FIRE and the inference procedure. We then present the ex-

perimental comparisons between FIRE and previous models

in joint E/MEG-fMRI analysis, followed by conclusions.

II. METHODS

A. Neurovascular coupling and data models

We assume that the source space comprises N discrete

locations on the cortex parcelled into K brain regions. We

denote the set indexing the discrete locations in region k by

Pk and the cardinality of Pk by Nk.

Fig. 1 illustrates the structure of our model. The shape

of the source timecourses is identical within a region but

varies across regions. Specifically, we let uk and vk be

the unknown waveforms in region k, associated with neural

and vascular activities, respectively. We model the neural

and the vascular activity strength through a hidden vector

variable Z = [z1, z2, · · · , zN ]T. The continuous scalar zn

indicates the activation strength at location n on the cortical

surface. Thus, the probabilistic model for the neural activa-

tion timecourse jn and the vascular activation timecourse fn
at location n in region k can be expressed as

log p
(
jn, fn|zn;uk,vk, η2

k, ξ2

k

)
(1)

= logN
(
jn; znuk, η2

kI
)

+ logN
(
fn; znvk, ξ2

kI
)
,

where η2

k and ξ2

k are noise variances. We construct all

matrices such that each row represents a location or a sensor

and each column represents a particular time point. Thus,

we let N × TJ matrix J = [j1, j2, · · · , jN ]T be the neural

current on the cortex for all TJ time points. We assume that

the vascular signal fn at location n is directly observable

through fMRI. We let N × TF matrix F = [f1, f2, · · · , fN ]T

be the fMRI measurements on the cortex over TF time points.

Note that our neurovascular coupling model captures only the

spatial alignment between the two types of activities; it does

not impose temporal similarity between the signals.

The neural currents jn are detected with E/MEG described

by the standard observation model. We let M × TJ matrix

Y = [y(1),y(2), · · · ,y(TJ)] be the E/MEG measurements

at all TJ time points. Column t of matrix J, j(t), denotes the

neural currents at time t. The quasi-static Maxwell’s equa-

tions imply that E/MEG signals at time t are instantaneous

linear combinations of the currents at different locations:

y(t) = Aj(t) + e(t) ∀ t = 1, 2, · · · , TJ, (2)

where e(t) is the measurement noise. The M ×N forward

matrix A is determined by the electromagnetic properties

of the head, the geometry of the sensors, and the set of

potential locations of the sources. With spatial whitening in

the sensor space, e(t) ∼ N (0, I). The number of sources

N (∼ 103 − 104) is much larger than the number of

measurements M (∼ 102), leading to an infinite number of

solutions satisfying Eq. (2) even for e(t) = 0. In general,

jn should be modeled as three timecourses corresponding to

the three Cartesian components of the current. However, due

to the columnar organization of the cortex, we can further

constrain the current orientation to be perpendicular to the

cortical surface and consider a scalar timecourse at each

location.

B. Priors and Parameter Settings

To encourage the activation patterns to be smooth within

a region, we impose a prior on the modulating variables.

Specifically, we define zk = {zn}n∈Pk
and assume zk ∼

N
(
0, γ2

kΦk

)
, where the variance γ2

k indicates the activation

strength in region k, and Φk is a fixed matrix that acts as a

regularizer by penalizing the sum of squared differences be-

tween neighboring locations. This spatial prior is particularly

important for the brain regions where vascular activity is too

weak to measure, but the neural activity can be detected by

E/MEG.

Our Φk is similar to the regularizer used in the Low Res-

olution Brain Electromagnetic Tomography (LORETA) [14],

except that we apply Φk to individual brain regions while

LORETA’s spatial regularizer is applied to the whole brain.

We assume separate variance γ2

k for different brain regions

since the strength of current is expected to vary significantly

between regions with and without active sources. This choice

is similar to the recent work in the application of ARD

to E/MEG reconstruction [15], [16], except that their work

assumes independent γ2 for each location in the brain.

Since the forward model A is underdetermined, the cur-

rent distribution J, produced by our neurovascular coupling

model, can fully explain the E/MEG data. In other words,

without the noise term η2

k (i.e., jn = znuk), the fMRI data

can exert too much influence on the reconstruction results.

Although we can estimate the noise variance of the current

source timecourses η2

k by extending the inference procedure,

we find the corresponding estimate unstable without a prior.

Based on preliminary empirical testing, we fix η2

k = 1. With

proper temporal whitening of the fMRI data, we can also
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assume that ξ2

k = η2

k. Fixing η2

k = ξ2

k helps to significantly

reduce the computational burden of the estimation.

To summarize, our model can be expressed as

p(F,Y,J, z;Θ) = p(Y|J)p(F,J|Z;Θ)p(Z;Θ) (3)

where Θ = [θ1, θ2, · · · , θK ] is the combined set of parame-

ters, and θk = {uk,vk,γ2

k}. p(Y|J) is the E/MEG data model

in Eq. (2). p(F,J|Z;Θ) is our neurovascular coupling model

in Eq. (1), and p(Z;Θ) is the prior on Z.

C. Inference

Our goal is to estimate the current source J and the

timecourses u and v. The activation strength Z is considered

as an auxiliary variable, and is marginalized in the analysis.

We formulate the inference as

{J∗, Θ∗} = argmax
J, Θ

log p(F,Y,J;Θ) (4)

= argmax
J, Θ

log

∫

Z

p(F,Y,J,Z;Θ)dZ

= argmax
J, Θ

log
(
p(Y|J)p(F,J;Θ)

)
.

With marginalization of Z, p(F,J;Θ) acts as the prior for

J. Since both F and J are linear functions of Z, p(F,J;Θ)
is a continuous Gaussian mixture model.

The difficulty in the inference of the proposed model

is caused by the intertwining between space and time,

reflected by the intersection of the temporal plates and

the spatial plates in Fig. 1. That is because the output of

a given E/MEG sensor is a mixture of signals from the

entire source space. Moreover, with Z marginalized, F,

J, and Y are jointly Gaussian distributed. The correlation

between different time points (i.e., between two E/MEG

time points, between two fMRI time points, and between

E/MEG and fMRI time points) is generally not zero. Hence,

the inference must be performed for all time points and all

locations simultaneously. FIRE is thus substantially more

computationally demanding compared to standard point-wise

E/MEG estimation in the time domain and voxel-wise fMRI

analysis.

Due to the special structure in our model, we can derive an

efficient gradient descent method with two alternating steps.

In the first step, we fix Θ and derive a closed-form solution

for J. In the second step, we fix J and show that Θ can be

efficiently estimated through the Expectation-Maximization

(EM) algorithm [4].

For a fixed Θ = Θ̂, p(F,Y,J; Θ̂) is a jointly-Gaussian

distribution. Thus, the estimate of J is the conditional mean:

Ĵ = arg max
J

log p(F,Y,J; Θ̂) (5)

= E
[
J|Y,F; Θ̂

]
= ΓT

W,JΓ
−1

W
W,

where WT =
[
(vec (Y))

T
(vec (F))

T
]

includes both E/MEG

and fMRI measurements. Operator vec (·) concatenates ad-

jacent columns of a matrix. ΓW is the covariance matrix of

W, and ΓW,J is the cross-covariance matrix between W

and vec (J). Thus, E/MEG and fMRI measurements jointly

determine the estimate of the neural activity. Eq. (5) is similar

to the standard MNE solution [8], but it also includes the

correlation between Y and F and the correlation among

different time points of J.

For a fixed J = Ĵ, we optimize the parameters Θ:

Θ̂ = arg max
Θ

log p(F, Ĵ;Θ). (6)

As shown in Fig. 1, when the current distribution J is fixed,

the E/MEG measurement Y does not provide additional

information for the parameter estimation. Since the parame-

ters for different regions are independent for a fixed Ĵ, the

estimates for different regions can be obtained independently.

Furthermore, parameter Θ can be efficiently estimated using

the EM algorithm by re-introducing the latent variable Z,

which is the auxiliary variable describing the activation

strength. For region k, the parameter estimates θ̂k can be ob-

tained by optimizing the lower bound of the log-probability:

log p
(
{fn, ĵn}n∈Pk

; θk

)
(7)

≥

∫

z
k

q(zk) log p
(
{fn, ĵn}n∈Pk

, zk; θk

)
dzk,

where q(zk) = p
(
zk|{fn, ĵn}n∈Pk

; θ̂k

)
is the posterior

probability computed in the E-step. Since {fn, ĵn}n∈Pk
and

zk are jointly-Gaussian distributed for a fixed θ̂k, q(zk)
is also a Gaussian distribution. We use 〈·〉q to denote the

expectation with respect to the posterior distribution q(zk),

i.e., 〈·〉q = E
[
·|{fn, ĵn}n∈Pk

; θ̂k

]
. Since the M-step depends

only on quantities related to the first- and the second-

order statistics of zk, we only need to update quantities

〈zkz
T
k〉q , 〈zk〉q , and 〈zT

kΦ
−1

k zk〉q in the E-step. The detailed

derivations can be found in [13];

In the M-step, we fix q(zk) and optimize Eq. (7). With

some algebra, we arrive at the update equations for the model

parameters:

ûk ←

∑
n∈Pk

〈zn〉q ĵn

tr(〈zkz
T
k〉q)

, v̂k ←

∑
n∈Pk

〈zn〉qfn

tr(〈zkz
T
k〉q)

,

and γ̂2

k ←
〈zT

kΦ
−1

k zk〉q
Nk

.

We iterate the EM algorithm until convergence which

usually takes less than ten iterations. We then re-estimate

J according to Eq. (5).

To summarize, the algorithm proceeds as follows:

(i) Initialize Ĵ as the MNE estimate.

(ii) Until convergence:

1) Compute Θ̂ using the EM algorithm: E-step for

the hidden variable Z followed by M-step for the

model parameters Θ.

2) Update Ĵ according to Eq. (5) for Θ = Θ̂.

III. RESULTS

We compared the performance of MNE, fMNE, fARD,

and FIRE using simulated data and MEG-fMRI data from

a somatosensory study. Due to space limitation, we only

1928



fMRI MNE fMNE fARD FIRE
Fig. 2. Human median-nerve ex-
periments. In the first column, ap-
proximate locations for cSI (solid),
cSII (dashed), and iSII (dashed) are
highlighted on the fMRI activation
maps. Columns two to five show the
current estimates obtained via MNE,
fMNE, fARD, and FIRE at 75 ms
after stimulus onset. Hot/cold colors
indicate outward/inward current flow.

report the results of the somatosensory study here. In this

experiment, the median nerve at the right wrist was stimu-

lated according to an event-related protocol, with a random

inter-stimulus-interval ranging from 3 to 14 s. This stimulus

activates a complex cortical network [9], including the con-

tralateral primary somatosensory cortex (cSI) and bilateral

secondary somatosensory cortices (cSII and iSII).

The MEG measurements were acquired using a 306-

channel Neuromag VectorView MEG system. A 200-ms

baseline before the stimulus was used to estimate the noise

covariance matrix of the MEG sensors. An average signal,

computed from approximately 100 trials, was used as the

input to each method. In a separate session, the fMRI images

were acquired using a Siemens 3T machine (TR=1.5 s,

64×64×24, 3×3×6 mm3). Anatomical images, from a 3T

scanner, were used to construct the cortical source space and

the boundary-element forward model. We also obtained the

cortical parcellation using the Freesurfer software, with 35

regions per hemisphere.

In the leftmost column in Fig. 2, approximate locations for

cSI (solid), cSII (dashed), and iSII (dashed) are highlighted

on the fMRI activation maps (p ≤ 0.005). Note that in the

noisy SPM, the sites of fMRI activations do not exactly agree

with the locations of the expected current sources.

Columns two to five in Fig. 2 present the estimates from

one subject at 75 ms after stimulus onset, during which cSI,

cSII, and iSII should be activated. Since the activation in

iSII is much weaker than that in cSI and cSII, the threshold

was set separately for each hemisphere. For each method,

the threshold is set to be 1/6 of the maximum absolute

value of the corresponding current estimates. MNE produces

a more diffuse estimate, including physiologically unlikely

activations at the gyrus anterior to the cSI area. In contrast,

FIRE pinpoints cSI on the post-central gyrus. With the prior

knowledge from fMRI, the detected cSII and iSII activations

using fMNE, fARD, and FIRE are within the expected areas.

The fMNE and fARD show stronger weighting towards the

fMRI, reflected by the activations in the temporal lobes. Due

to the highly folded cortex and uncertainties in MRI-fMRI

registration, fMRI cannot distinguish between the walls of

the central sulcus and the post-central sulcus, causing both

walls to show strong vascular activity after mapping of the

fMRI volume onto the cortex. Hence, fMNE, fARD, and

FIRE estimates extend to both sulcal walls mentioned above.

IV. CONCLUSIONS

In contrast to most joint fMRI-E/MEG models, FIRE ex-

plicitly takes into account the inherent differences in the data

measured by E/MEG and fMRI. The corresponding estimates

can be efficiently computed with an iterative procedure which

bears similarity with re-weighted MNE methods, except

that the weights are based on both the current estimates

from the previous iteration and the fMRI data via the

proposed neurovascular coupling model. This construction of

the weights reduces the excessive sensitivity to fMRI present

in many joint fMRI-E/MEG analysis methods, leading to

more accurate current estimates as demonstrated by analysis

of both simulated and human data.
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