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Abstract—Conventional B-mode imaging in ultrasound 
consists of displaying the log-compressed envelope of the 
backscattered signal. While clinical ultrasonic B-mode images 
have good spatial resolution, i.e., better than a millimeter, the 
contrast resolution of ultrasonic B-mode images is typically 
low. However, additional information is contained in the 
ultrasonic backscattered signal, which can be used to create 
images related to tissue microstructure. Because diagnosis of 
disease is typically based on histological examination of tissue 
microstructure, the ability to quantify and describe tissue 
microstructure through ultrasound may result in improved 
diagnostic capabilities of ultrasound. Tissue-mimicking 
phantoms and animal models of breast cancer were used to 
assess the ability of novel ultrasonic imaging techniques to 
quantify microstructure. Four parameters were extracted from 
the ultrasonic backscattered signal and related to the 
microstructure. The effective scatterer diameter (ESD) and the 
effective acoustic concentration (EAC) parameters were based 
on modeling the frequency dependence of the backscatter. The 
k parameter (which quantifies the periodicity of scatterer 
locations) and the μ parameter (which estimates the number of 
scatterers per resolution cell) were based on modeling the 
statistics of the backscattered envelope. Images constructed 
with these parameters resulted in an increase in contrast 
between diseased tissue and normal tissues but at the expense 
of spatial resolution. Specifically, in simulation, quantitative 
ultrasound (QUS) increased the contrast-to-noise ratio (CNR) 
between targets and background by more than 10 times in 
some cases. Statistically significant differences were observed 
between three kinds of tumors using the ESD, EAC, and k 
parameters. QUS imaging was also improved with the addition 
of coded excitation. A novel coded excitation technique was 
used that improved the variance of estimates over conventional 
pulsing methods, e.g, the variance of ESD estimates were 
reduced by a factor of up to 10. 

I. INTRODUCTION 
iagnostic medical ultrasound is a fast, safe, non-
invasive, and inexpensive imaging modality [1], [2]. 

Because of these factors, ultrasonic imaging is an attractive 
approach for the detection and monitoring of disease. In 
fact, the use of ultrasound to observe morphological 
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structures associated with disease dates back over 55 years 
[3]. 

An even more robust diagnostic capability for ultrasonic 
imaging is possible if tissue microstructure could be imaged 
because diagnosis of disease is often based on microscopic 
evaluation of tissues. However, the histopathologic features 
used to make diagnoses may be as small as 5 µm [1]. 
Assuming a propagation speed for ultrasound of 1540 m/s, 
the frequency required to achieve a 5 µm wavelength (the 
resolution of the imaging system) is over 300 MHz. Along 
with the present technical difficulties associated with the 
production of high frequency ultrasound, the attenuation of 
high-frequency ultrasound in tissues limit the penetration 
depth used in practice. Typical clinical ultrasound systems 
employ frequencies in the range of 1 to 15 MHz [4], [5]. A 
focused (f/2.4) 10 MHz linear array transducer typical of 
current clinical ultrasound systems has a penetration depth 
of roughly 5 cm assuming a linear attenuation coefficient of 
0.5 dB MHz-1 cm-1. Considering only diffraction effects, the 
ideal axial resolution is 0.33 mm, and the ideal lateral 
resolution is 0.26 mm [6]. Therefore, the direct imaging of 
tissue microstructure on the scale of 10s of micrometers or 
less is not feasible, and alternative approaches have to be 
used instead. Adding to the difficulties of making diagnoses 
is the low contrast associated with ultrasonic imaging often 
observed between diseased and normal tissue and the 
qualitative nature of ultrasonic B-mode imaging. 

Quantitative ultrasound (QUS) imaging techniques have 
been developed that provide information about tissue 
microstructure on the order of 10s of micrometers. While the 
QUS imaging techniques do not resolve tissue 
microstructure, these techniques provide statistical 
parameters describing the microstructure. Maps of these 
parameter values can be generated to construct QUS images 
that can help in identification and classification of tissues. 

The paper is organized as follows: Section II briefly 
describes the methodology used to extract the tissue 
microstructure parameters. Section III provides results and 
discussion from simulations and experiments with animal 
models of cancer. The conclusions regarding the study are 
provided in Section IV. 

II. METHODOLOGY 

A. Spectral Parameters 
Conventional B-mode images were acquired from tumors 

using transducers that spanned frequency ranges from 5 to 
25 MHz. The tumors consisted of eight benign, 
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spontaneously occurring fibroadenomas in rats, 10 mouse 
mammary carcinomas, and 10 mouse mammary sarcomas. 
The rodent tumors were animal models of breast cancer in 
humans [7]. The backscattered power spectra were measured 
for many regions of interest (ROIs) within the tumors. The 
ROIs corresponded to five beamwidths laterally and 12 
pulse lengths axially (gated with a Hanning window). The 
measured backscattered power spectrum for an ROI was 
found by averaging the backscattered power spectra 
estimated from the gated echo signals corresponding 
spatially to the ROI. The measured backscattered power 
spectrum is given by [8] 
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where ( ){ }FT p tn  represents the Fourier transform of the 

gated RF signal of the nth scan line, N is the number of 
gated scan lines contained within a ROI, A( f, L) is a 
frequency-dependent attenuation-compensation function and 
Wref ( f ) is the reference power spectrum [9]. The effects of 
the equipment on the power spectrum measurement were 
factored out by dividing by a reference spectrum [10]. The 
reference power spectrum was obtained by recording RF 
signals from reflections off a smooth planar surface of 
known reflectivity normal to the transducer beam axis.  The 
planar reflector was translated from location at the front of 
the depth of field of the transducer to the back of the depth 
of field with a distance of 75 μm (the wavelength at 20 
MHz) between steps.  At each point the RF signal reflected 
from the smooth planar surface was recorded.  The reference 
power spectrum for an ROI was calculated by averaging the 
squared magnitude of the Fourier transform of each reflected 
RF signal corresponding to the axial location of the ROI 
[11].  The measured backscattered power spectrum was 
compensated for attenuation losses according to the 
frequency-dependent attenuation-compensation function, A( 
f, L), derived for an echo signal that was gated with a 
Hanning window [9].  
 Estimates of the effective scatterer diameter (ESD) and 
the effective acoustic concentration (EAC) were obtained by 
comparing the measured power spectrum from eq. (1) to a 
theoretical power spectrum. The ESD describes the size of 
the microstructure giving rise to the scattered signal and the 
EAC describes the number density of scatterers times the 
square of the impedance difference between the scatterers 
and background. ESD and EAC estimates were obtained for 
each ROI. 

B. Envelope Statistics 
The homodyned K distribution [12] was used to model 

the amplitude distribution of backscattered ultrasound from 
the tumors. The model yields two independent parameters 
related to tissue microstructure: the effective scatterer 
number density, i.e., the effective number of scatterers per 
resolution cell (μ parameter) and a parameter related to the 
periodicity of scatterer locations (k parameter). 

The analysis of each tumor was divided into many 

overlapping ROIs as in the spectral parameter estimation. 
Extending previous work [13], envelope statistics parameter 
estimation was performed by first calculating the SNR, 
skewness, and kurtosis of fractional-order moments of the 
envelope samples in each ROI. The use of fractional-order 
moments was motivated by previous work [14], [15] which 
found that parameter estimates based on fractional-order 
moments were more robust than parameter estimates based 
on higher-order moments for the simpler, but related, K 
distribution. Parameter estimates were deduced by 
performing a minimum mean-squared error fit between the 
estimates of SNR, skewness, and kurtosis and theoretical 
values predicted by the homodyned K distribution. As in 
[13], the use of SNR, skewness, and kurtosis allowed an 
efficient estimation algorithm to be implemented. 

C. Coded Excitation 
A method for improving the contrast and axial resolution of 
QUS parametric images by using the resolution 
enhancement compression (REC) technique was 
incorporated in the study [16]. REC is a coded excitation 
and pulse compression technique that improves the axial 
resolution and enhances the -6-dB bandwidth of an 
ultrasonic imaging system. The variance of spectral 
estimates can be reduced with increased bandwidth in the 
imaging system [17]. The objective of using the REC 
technique was to improve the variance of ESD estimates 
because of the increased SNR and increased bandwidth 
provided by REC. Simulations were conducted with a 
single-element transducer (f/4) having a nominal center 
frequency of 10 MHz and a -6-dB bandwidth of 80%. Using 
REC, the -6-dB bandwidth was enhanced to 155%. Images 
and estimates of scatterer properties using the REC 
technique were compared with images and estimates using 
conventional pulsing (CP) techniques. In simulations, a 
software phantom with cylindrical lesions was evaluated. 
The software phantom contained cylindrical lesions filled 
with spherical Gaussian scatterers of 30, 60 and 90 μm in 
diameter in a background filled with spherical Gaussian 
scatterers of 50 μm in diameter. Improvements in REC-QUS 
over conventional QUS were quantified through estimate 
variance and contrast-to-noise ratio (CNR) of QUS 
parameter images. The CNR of QUS images were also 
compared to the CNR of conventional ultrasonic B-mode 
images. 

D. Parametric Image Formation 
Parametric images were constructed by superimposing 
color-coded pixels on a conventional gray-scale B-mode 
image of the tumors or phantoms.  The size and location of 
the color-coded pixels corresponded to ROIs from which 
estimates related to microstructures were obtained.  For the 
spectral estimates, a sliding Hanning window was used 
axially to range gate the signals corresponding to the ROIs 
with an overlap of 75%.  For the estimates from the 
envelope statistics a rectangular window was used as the 
range gate function. Laterally, each ROI overlapped the next 
ROI by 75%.  Therefore, each pixel represents at maximum 
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the average from 16 ROIs. The color of the pixels 
corresponded to the value of the parameter estimated for 
each ROI. The resulting color-coded pixels represented 
maps of the underlying tissue properties as described by the 
estimates. Four registered parameter images could be 
generated for each sample examined. 

III. RESULTS 
Mean estimates of the ESD, EAC, µ parameter and k 
parameter along with the standard deviation of the estimates 
are listed in Table I. These estimates represent the average 
estimate for a particular kind of tumor. Estimates of the p-
values between pairs of tumors were obtained through 
ANOVA and these results are also displayed in Table I. 
Statistically significant differences were observed between 
estimates of ESD, EAC, and k for all of the three kinds of 
tumors examined. Statistically significant differences were 
observed between the Estimates of the µ parameter did not 
result in the observation of statistically significant 
differences between the any pairs of tumors examined.   

Parameter images using the estimates from spectral and 
envelope statistics for each of the kinds of tumors are shown 
in Fig. 1. The most prominent differences in the images can 
be observed with parametric images constructed using the 
ESD and EAC parameters. However, use of multiple 
parameters resulted in improved classification of the tumors 
over using just a single parameter for classification. The 
improved classification using a multiple parameter approach 
can be illustrated through the feature analysis plot of Fig. 2. 
A clear separation is observed when plotting the parameter 
values estimated for each tumor in the feature analysis plot. 
Simple lines can be drawn between the three kinds of tumors 
suggesting the ability to clearly differentiate (i.e., diagnose) 
between the three kinds of tumors examined. 

 
Table I. Average estimates of the ESD, EAC, µ parameter and k 

parameter from three kinds of tumors.  

 
The use of coded excitation, i.e., the REC technique, 

resulted in improved depth of penetration for making 
estimates and a decrease in the variance of ESD estimates 
[18]. Figure 3 shows images of the software phantom used 
to demonstrate the improvements introduced by using the 
REC technique with QUS imaging. Table II lists the CNR 
and the estimate variance values for the B-mode images and 
the QUS images.  

Improvements in the conventional B-mode images can be 
observed when using the REC technique over CP 
techniques. The spatial resolution of the B-mode images was 

improved using REC technique, which can be identified by 
the smaller speckle size in the REC B-mode images and the 
improved definition of the lesion margins. In addition, a 
small improvement in the CNR was observed for the REC 
technique compared to the CP technique. 

 

 

 

 
Figure 1. Parametric images of three kinds of tumors (left) 
fibroadenomas, (middle) carcinomas, and (right) sarcomas using (top 
two panels) spectral estimates and (bottom two panels) estimates from 
the envelope statistics.  

 

 
Figure 2. Feature analysis plot of the ESD versus the k parameter 

versus the μ parameter. 

The variance of QUS estimates were also observed to 
improve with the use of REC over CP. Because of the 
increased bandwidth from the REC technique, the variance 
of QUS estimates decreased resulting in smoother images of 
the cylindrical lesions in the QUS images. In addition, the 
CNR, which describes the contrast resolution for QUS 
imaging, was observed to increase when using the REC 
technique for creating parametric images of ESD.  

Power spectrum 
parameters 

Envelope statistics 
parameters   

ESD  
(µm) 

EAC  
(dB) 

k µ 

Carcinomas 42.0 ± 4 16.4 ± 17 0.60 ± 0.07 3.95 ± 3.6 
Sarcomas 32.1 ± 4 36.4 ± 12 0.45 ± 0.03 2.28 ± 1.7 

Fibroadenomas 107 ± 13 -15.2 ± 5 0.54 ± 0.04 3.31 ± 1.5 
 p < 0.05 p < 0.05 p < 0.05 p > 0.5 
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Finally, the contrast between the cylindrical lesions was 
increased using QUS imaging over conventional B-mode 
imaging. Specifically, the CNR of the QUS images 
increased in some cases by an order of magnitude over the 
conventional B-mode images. These improvements could 
result in improved diagnostic performance over 
conventional methods. 

 

 

 
Figure 3. (top panels) B-mode images of software phantom with three 
cylindrical targets using CP and REC, and (bottom panels) parameter 
images using the ESD of the software phantom constructed with CP 
and REC techniques. 
 

Table II. Estimates of CNR and variance of ESD  estimates for the B-
mode images and the QUS images using CP and REC techniques. 

CNR Variance of 
ESD 

CP REC 

Diamete
r 

[μm] 
B-mode QUS B-mode QUS 

CP REC 

30 0.28 2.28 0.33 3.31 73.3 16.4 
60 0.17 1.45 0.19 3.66 22.9 2.29 
90 0.83 6.67 0.85 16.8 2.93 1.11 

IV. CONCLUSION 
QUS imaging was observed to significantly improve the 
ability to classify disease by increasing the contrast between 
diseased and healthy tissue and by providing estimates of the 
tissue microstructure. A novel coded excitation was used to 
decrease the variance of ESD estimates thereby improving 
the CNR of QUS imaging. Future work will look at 
constructing new scattering models based on histological 
analyses, translating these techniques for clinical 
application, and examining the use of coded excitation for 
improving accuracy and precision of other QUS estimates. 
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