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Abstract— An increased listening effort represents a major
problem in humans with hearing impairment. Neurodiagnostic
methods for an objective listening effort estimation could
revolutionize auditory rehabilitation. However the cognitive
neurodynamics of listening effort is not understood and re-
search related its neural correlates is still in its infancy.

In this paper we present a phase clustering analysis of
large–scale listening effort correlates in auditory late responses
(ALRs). For this we apply the complex wavelet transform as
well as tight Gabor Frame (TGF) operators. We show (a) that
phase clustering on the unit circle can separate ALR data from
auditory paradigms which require a graduated effort for their
solution; (b) the application of TGFs for an inverse artificial
phase stabilization at the α/θ–border enlarges the endogenously
driven listening effort correlates in the reconstructed time–
domain waveforms.

It is concluded that listening effort correlates can be extracted
from ALR sequences using an instantaneous phase clustering
analysis, at least by means of the applied experimental pure
tone paradigm.

I. INTRODUCTION

An increased listening effort represents a major problem

in humans with hearing impairment [1], [2]. In the area of

auditory habilitation and rehabilitation digital signal process-

ing has revolutionized the hearing aid technology during the

last decade. Modern digital hearing aids offer vast fitting

capabilities, allowing a high degree of adaptation to the

needs of the individual patient, see [3] for a survey. The

utilization of this adaptivity to reduce the listening effort

in the individual patient is a major concern in hearing aid

fitting. However, fitting procedures which preferably require

a minimum cooperation of the patient are still missing

and the objective estimation of the listening effort based

on auditory processing correlates represents an unsolved

problem [2], [3].

Rather isolated past research mainly deals with double

stimulation paradigms using finite resources/capacity cogni-

tive models [4], [5]. Here the patients have to solve a primary

task related to speech discrimination and a secondary task

involving their (motor) reaction time to another secondary

visual stimulus, see [4], [5] and [6] for a more recent
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review. However these paradigms require an increased patient

cooperation, they are influenced by many non–listening effort

related factors, and are a priori based on a crossmodal

design, moving the focus away from the auditory modality.

Recent research pointed out the importance of non–

audiological variables for hearing aid fitting, in particular,

for modern and flexible digital devices, see [7] and [2].

Edwards [3] identified the potential of advances in hear-

ing science and cognition for radical innovations in future

hearing aid technologies. Pichora–Fuller [2] highlighted the

importance of neuroscience research related to attention

and cognitive effort estimation for hearing aid fitting and

audiologic rehabilitation. Very recently, [8] reviewed the

role of selective attention in normal and hearing impaired

listeners. In particular, these authors discussed how hearing

impairment may degrade selective attention.

Based on our results in [9] and [10], we present a phase

clustering analysis of large–scale listening effort correlates

in auditory late responses (ALRs) in this paper.

II. METHODS

A. Neurodynamics of Listening Effort

Listening: Kiessling et al. [11] described hearing as a

passive function that provides access to the auditory world

via the perception of sound, primarily useful to describe

impairment by audiometry methods whereas listening was

defined as the process of hearing with intention and attention

which requires the expenditure of cognitive demands.

Auditory Scene Analysis: Let us now discuss listen-

ing from a bidirectional bottom–up (exogeneous)/top–down

(endogenous) auditory processing point of view. Several

computational theories have been developed to augment

the bottom–up sensory processing with top–down feedback

mechanisms, e.g., see [12], [13], [14], [15] and references

therein. Employing schema based information stored in

memory and driven by, e.g., expectation, experience, and

emotions, these models generate predictions on higher pro-

cessing areas which are projected to lower processing areas

to influence the bottom–up information flow.

Let us now concentrate on top–down projections in the

auditory modality. According to auditory scene analysis

(ASA) and Bregman [16], the processing of exogeneous in-

formation reaching conscious states involve an analytical and

a synthetical stage: the perceptual stimuli are decomposed

into discrete sensory elements in the analytical stage; the

sensory elements that are likely to have arisen from the same

acoustical source are recombined into a perceptual stream
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in a process called auditory grouping (synthetical stage). In

auditory grouping, we can differentiate between exogenous

(primitive) and endogenous (schema–driven) grouping. Ex-

ogenous grouping is a purely data–driven process. Endoge-

nous grouping utilizes the top-down projections mentioned

before.

In the following, we use the term endogenous top–

down projections or endogenous processing for subcon-

scious and consciously driven top–down projections evoked

by intention. A simplified representation of the auditory

stream selection model by selective attention given in [9]

is discussed in the following: Let the d–dimensional vector

w = (w1, w2, . . . , wd) denote the weights of the segregated

streams according to their assigned probability of getting

selected (highest to lowest). The selection probability de-

pends on exogeneous (e.g., physical stimulus attributes) and

endogenous factors such as corticofugal top–down modula-

tion by intentional processes. As listening is defined as an

auditory process with intention and attention, we assume that

it represents an effortful endogenous modulation of w in this

scheme.

A common complaint of the hearing impaired is that

listening in noisy situations is an exhausting experience, and

a hearing impaired person is far more tired after some time

in such a setting than someone with normal hearing [3]. In

noisy situations, there are many competing auditory streams.

It could be argued that a distorted auditory system is of

course less effective in automatic ASA processes, especially,

exogeneous processes and needs more endogenous modu-

lation and effort, e.g., expectations driven by the semantic

context of a stream which would be in accordance to the

findings of [3], [2], [17].

Prediction: The probabilistic stream selection model which

we sketched before can be mapped to the corticothalamic

feedback loops, see [9] for the neurodynamics of attention

and listening effort in [10]. This model predicts a larger

phase synchronization of ALRs in the N1 range for a larger

corticofugal modulation (over the thalamic reticular nuclei)

of bottom–up information, see [9], [10] for details.

B. Subjects, Experimental Paradigm, and Signal Processing

Subjects were student volunteers from the Saarland Uni-

versity and Saarland University of Applied Sciences with

normal hearing. A total of 20 subjects (mean age: 27,

standard deviation: 4.1; 9 females, 11 males) entered the

study. ALR single sweeps were recorded using a commer-

cially available amplifier (g.tec USBamp, Guger Technolo-

gies, Austria) and electrodes were placed at the left and

right mastoid, the vertex, and the upper forehead. Elec-

trodes impedances were below 5kΩ in all measurements

(filter: 1Hz–30Hz, sampling frequency: 512Hz). Two differ-

ent paradigms were used with a distinct degree of difficulty

to solve an auditory task. Artifacts where removed by an

amplitude threshold of 50µV .

Difficult Paradigm (DP): For DP we delivered 3 pure tones

(1kHz, 1.3kHz and 1.6kHz) at 70dB (HL) of 40ms each in

random order to the right ear at randomized inter-stimulus

interval (ISIs) of 1–2s. Meanwhile, the left ear was presented

with music which played the role as distractor. Subjects were

required to pay attention to the stimulus and detect the target

tone which was the 1.3kHz stimulation.

Easy Paradigm (EP): For EP we delivered just 2 pure tones

(0.5kHz, 1.3kHz) at 70dB(HL) of 40ms each in random order

to the right ear at randomized ISIs of 1–2s. Subjects were

required to pay attention to the stimulus and detect the target

tone which was the 1.3kHz stimulation.

The randomized stimulation paradigms were used to max-

imize the entropy of the experiment such that attention and

effort is required to solve them. The rational for DP and EP is

that solving DP requires more listening effort than solving

EP. The subjects had to press a button after a target tone

had been recognized. The number correctly identified target

tones also served as control of the cooperation of the subject.

For the numerical analysis in Sec. III, we considered just

ALRs that were evoked by the target tone as it had the same

frequency in both paradigms. This is a necessary constraint

as our extracted time–scale features (see below and [18])

depend on the stimulation frequency such that the results to

different simulation frequencies could not be compared.

The randomized stimulation paradigms were used to max-

imize the entropy of the experiment such that attention and

effort is required to solve them. The rational for DP and

EP is that solving DP requires more listening effort than

solving EP. The subjects had to push a button after a target

tone had been recognized. The number correctly identified

target tones also served as control of the cooperation of the

subject. For the numerical analysis in Sec. III, we considered

just ALRs that were evoked by the target tone as it had the

same frequency in both paradigms.

Phase Synchronization Stability: Using a phase clustering

analysis on the unit circle (e.g., see [19], [20]), we have

recently shown that the stability of the instantaneous phase

can be used to efficiently monitor auditory attention in

maximum entropy paradigms [18].

Given the sequence X = {xk ∈ ℓ2 : k = 1, . . . , M} of

M ALR single sweeps, we define the phase synchronization

stability by the following equation

ΓN
µ,ν(X ) =

1

N

∣

∣

∣

∣

∣

N
∑

k=1

eıΦµ,ν(xk)

∣

∣

∣

∣

∣

, N ≤ M, (1)

where Φµ,ν(xk) represents the instantaneous phase, de-

pending on the scale parameter µ and the time parameter

ν. In the case of the continuous complex wavelet transform

(CCWT), we obtain the wavelet phase synchronization sta-

bility (WPSS) by Φµ,ν(xk) = arg ((Wψxk)[µ, ν]), where

Wψ is a discrete–time version of the wavelet operator to

the wavelet ψ, see [21]. Another way to derive by the

instantaneous phase stability by means of tight Gabor frames

(TGFs), see [22] for an introduction to TGFs. For the

TGFs we obtain the Gabor frame phase stability (GFPS) by

Φµ,ν(xk) = ((Gϕxk)[µ, ν]), where Gϕ is the tight Gabor

frame analysis operator to the generating function ϕ.
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Analysis of the Phase Stability: The WPSS is well local-

ized in time and frequency using the Heisenberg adaptivity of

the wavelets, i.e., a large support in time for low frequencies

with a good frequency resolution and small support (good

localization) in time for high frequency components.

As for the analysis of ALRs related to N1 wave modula-

tions by attention [21], we use the WPSS for the forward

analysis by Eq. (1) in this study with µ = 40 which

corresponds to the α/θ–border (6–9 Hz) for the chosen

wavelet (the 6th derivative of the complex Gaussian function

as in [21]).

It is easy to see that the synchronization stability as

evaluated by the wavelet phase stability in Eq. (1) is a value

in [0, 1]. We have a perfect synchronization stability for a

particular µ′ and ν ′ for Γµ′,ν′ = 1 (perfectly coherent phases)

and a decreasing stability for smaller values due to phase

jittering.

Phase Stability Modification: The GFPS provides a uni-

form decomposition of the ALR single sweep frequency

band such that each modulation parameter µ can be directly

associated with a frequency band in Hz. In contrast to the

highly redundant CCWT, TGFs may provide a very efficient

analysis as well as synthesis of the analyzed signal using

the very same function, e.g., see [23] an references therein.

For an efficient inverse transform of the CCWT, the δ–

distribution reconstruction [24] is frequently used.

For the experiments in our study, we used a tight window

generated from the Gaussian function with 128 modulations

and ν = 1. Note that these values result in an overcomplete

Gabor frame decomposition with m = 0, 1, . . . , M − 1 (m

is the modulation index) frequency channels spanning the

frequency interval [mfc, (m + 1)fc] with fc = fs/(2M) (fs

is the sampling frequency).

III. RESULTS AND DISCUSSION

In Fig. 1 we have shown the evolution of the WPSS for

an increasing number of sweeps of one subject as example.

More precisely, we used Eq. (1) to obtain the (discrete)

function ξµ,ν [n] = Γn
µ,ν(X ) (n = 1, 2, . . . , N ) with N =

100, µ = 40, and ν corresponding to 110ms, i.e., a sample

from the N1 wave range.

Fig. 1. The evolution of the WPSS over the sweeps as represented by the
function ξµ,ν [·] (slightly smoothed for this graph and normalized).

It is noticeable that the WPSS provides a robust discrim-

ination of DP and EP data sets, even for a small number

of sweeps for the measured and simulated data. However, in

the simulated condition, the oscillatory behavior is of course

different due to the highly simplified noise model.

DP

EP

solving relaxing

Fig. 2. Topological mapping of the WPSS for 100 sweeps in a paradigm
/ condition matrix using a 64 channel recording. The rows represent the
WPSS while stimulating with DP and EP. The columns represent the WPSS
while solving the paradigm and a relaxing condition. Normalized scale for
WPSS: black/dark red(0) to white/light yellow (1).

Fig. 3. Left: Grand average of the WPSS (over all the subjects) for EP
and DP. Right: The results for the time resolved ANOVA.

Topological Mapping: In Fig. 2 we have shown a topo-

logical mapping of the WPSS for 100 sweeps in a paradigm

/ condition matrix using a 64 channel recording from one

subject as example. The matrix shows the WPSS for solving

DP and EP and for relaxing during the DP and EP stimula-

tion, i.e., not solving the paradigms. It is noticeable that the

WPSS is much larger in temporal and parietal areas while

solving the DP as compared to the solution of EP and the

relaxed condition, respectively.

DP/EP Discrimination: Figure 3 (left) shows the grand

average (averaged over all the subjects) of the ipsilateral

WPSS in Eq. (1) for a sequence of N = 100 sweeps per

subject and paradigm, respectively. It is noticeable that the

WPSS is much larger for the DP than for the EP, especially

in the expected interval. In Fig. 3 (right) we have shown

the results for the time resolved (one–way) ANOVA (over

the subjects to evaluate the significance of the grand average

in the plot above). It is noticeable that in the interval of

interest of the N1 and P2 wave in ALRs, we have significant

differences between the EP and DP condition. This shows

that the increased effort to solve the more difficult paradigm

DP is reflected in an increased WPSS of ALR sequences.

Artificial Phase Modification: In Fig. 4 (left) we have

shown the results of an experiment using the phase mod-

ification and synthesis approach described in Sec. II-B.

In particular, we have shown the averaged time domain

waveform (using N = 100 sweeps) for a DP and EP

data set. The EP data set was phase stabilized at the α/θ–

border and synthesized. The α/θ–border corresponds here
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approximately to scale 40 in the WPSS experiments before.

It is noticeable that the average of the ALR single sweep set

X in the EP condition with this small band phase correction

shows a large correlation to the DP data set in the N1 and

P2 wave range.

Fig. 4. Left: The averaged time domain ALRs for the DP and EP as well
as EP with an artificial phase stabilization. Right: The increase of the N1
negativity after the artificial phase stabilization in the EP data for all the
subjects.

In Fig. 4 (right) we show the increase of the N1 wave neg-

ativity after the phase stabilization for all the subjects (mean

increase of the negativity: -1.4047 µV; standard deviation:

0.6208µV). It is noticeable that the phase stabilization results

in a larger N1 negativity for all the subjects and thus has a

crucial influence on the N1 amplitude for the experimental

data. This shows that a small band phase reset (at the α/θ–

border) in averaged ALRs – interestingly in way, such that a

phase corrected (the the α/θ–border) EP data resembles DP

data (without changing the energy of the individual sweeps

in these bands). Although the discussion whether late evoked

responses are due to a phase reset of the ongoing activity or

just superimposed to the oscillatory electroencephalographic

activity is a major research topic at the moment, e.g., see [25]

and references therein, the clear discrimination of evoked

from phase reset features is beyond the scope of this paper.

IV. CONCLUSIONS

We have presented a phase stability analysis of large–scale

listening effort correlates in ALRs using forward and inverse

transform techniques.

It is concluded that listening effort correlates can be

extracted from ALR sequences using an instantaneous phase

clustering analysis, at least by means of the applied stimu-

lation paradigm.
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