
  

  

Abstract— Recent experimental evidence suggests that a 
fundamental property of the human motor system is that it 
“slacks”; that is, that it continuously attempts to decrease levels 
of muscle activation when movement error is small during 
repetitive motions. This paper reviews several computational 
models of slacking, and discusses implications of slacking for 
the design of robotic orthoses. For therapeutic applications of 
robotic orthoses, slacking may reduce human effort during 
rehabilitation training, with negative consequences for use-
dependent motor recovery. For assistive applications of robotic 
orthoses, slacking may allow the motor system to learn to take 
advantage of force amplification provided by an orthosis, with 
positive consequences for human energy efficiency. 

I. INTRODUCTION 
here is increasing interest in developing robotic orthoses 
that physically assist people in walking or in performing 

upper extremity movements [1, 2]. Applications of this 
technology include rehabilitation therapy for people who are 
recovering from neurologic injuries [2], and assistive 
devices that allow people with or without disabilities to 
perform daily tasks, such as walking, more effectively [1].   

For both of these applications an important consideration 
is the way in which the assistance provided by the robotic 
orthosis modulates the force production of the user. For 
therapeutic applications, high levels of patient effort are 
thought to be important for building muscle strength and for 
facilitating motor learning [3]. Improvements in 
cardiopulmonary conditioning also depend on the level of 
energy expended during training. Therefore it seems 
desirable that the assistance provided by a therapeutic 
orthosis be provided in such a way so that the orthosis does 
not “take over” and eliminate force production by the user.   

On the other hand, for assistive applications, the goal is 
often to reduce the energy output of the user, so the user can 
walk longer with heavier loads, for example [1]. In this case, 
it would be desirable for the orthosis to take over force 
production while leaving movement control to the user.  

Achieving these design goals requires understanding how 
the human motor system adapts to externally applied force. 
Recent evidence suggests that a fundamental property of the 
human motor system is that it continuously attempts to 
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decrease levels of muscle activation during repeated 
movement when movement errors are small [4-6]. This 
paper describes several computational models of slacking, 
then shows how these models can be used to predict and 
optimize human responses to robotic orthoses.  

II. COMPUTATIONAL MODELS OF HUMAN SLACKING 

A. Discrete model of slacking based on changes in limb 
force production 
Consider a repetitive movement such as walking on a flat 

surface or reaching repeatedly to a fixed target. Assume that 
each movement produces an error that can be summarized 
with a scalar variable e.  Here, we assume movement error is 
kinematic, but it could also be a force error or an error 
related to balance or gait speed. To reduce kinematic 
movement error, the human motor system generates 
feedforward commands for the relevant muscles using an 
internal model of the limbs and the task dynamics [7]. 
Recent experiments in which the task dynamics were 
suddenly altered indicate that the feedforward muscle force 
ui+1 for the next movement (i.e. the ith + 1 movement) is 
generated by adjusting the last-used feedforward muscle 
force ui (i.e. that for the ith movement) based on the 
movement error ei on the ith movement [5, 8]. The general 
modeling paradigm is: 

1 ( ) ( )i i iu F u G e+ = −   (1) 
where ui is a scalar parameter that summarizes, for example, 
the maximum or mean force applied on movement i, or a 
scaling factor for a force waveform. F is a function that 
represents a neural process of recall from some sort of 
storage of the previously-tried command ui, and G is a 
function that implements error-based learning. Several 
recent studies [5, 8, 9] have shown that linear versions of F 
and G can account for 80-90% of the variance of movement 
error during adaptation to novel dynamic environments for 
reaching or walking movements, resulting in an equation of 
this form: 

1i i iu fu ge+ = −    (2) 
where f and g are constants.  
 The constant “f” has sometimes been termed a forgetting 
factor (e.g. [5]), which implies an unintentional loss of 
fidelity in recall from neural storage.  In this paper, we will 
call the constant f the “slacking factor” because we contend 
it implements a planned mechanism for minimizing effort, 
rather than an unintentional error in recall. As support, 
Emken et al. [5] showed that the update law of Equation 2 
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implements a greedy minimization of the sum of error and 
effort, with the constant f determining the weighting of 
effort in the cost function. For reference, Emken et al. [5] 
found that f is about 0.6 – 0.8 when adapting to a viscous 
force field applied to the ankle during walking.  

Equation 2 defines the slacking process: when movement 
error ei is small, then the motor command ui will decay 
exponentially from movement to movement with a time 
constant τ = -1/ln(f), if 0 < f < 1.  Thus, Equation 2 indicates 
that the motor system continuously attempts to decrease 
levels of muscle activation during a repeated movement 
when movement errors are small.   
 Slacking can be difficult to detect because it typically 
increases movement errors as it progresses, triggering error-
corrective motor processes that raise muscle activation, 
resulting in no net decrease in muscle activation. An 
experimental protocol was developed by Scheidt et al. [4] 
that circumvented this problem.  This protocol has recently 
been named an “error clamp” [10].  In this protocol, applied 
first to straight-line reaching movements in robotic force 
fields, a person was allowed to adapt to a novel 
environment, which required that the person adjust the 
motor command u to some non-nominal value. Then the 
environment was reverted to a virtual, straight-line channel, 
which had the effect of “clamping” kinematic error during 
reaching to be zero, no matter what motor command the 
subject used.  Scheidt et al. [4] found that the motor 
command that generated force against the channel decayed 
exponentially toward zero over many movements in this 
condition (mean time constant across 6 healthy subjects τ = 
138 trials), consistent with slacking in Equation 2 with e = 0. 

B. Slacking in terms of changes in muscle activation 
A shortcoming of the formulation in Equation 2 is that it 

cannot explain the activation patterns of individual muscles, 
or the phenomenon of impedance control. Franklin et al. 
[11] recently proposed an elegant model that addresses these 
shortcomings. In this model, the motor system adjusts the 
activations of individual muscles in response to movement 
errors using the following update law: 

1 ( )i i iu u G e+ = −  (3) 
where ui > 0 now represents the amount of feedforward 
muscle activation and ei the muscle length error. The update 
function G is the sunken, asymmetric “V” shown in Figure 
1. Since the update function is a “V”, the motor system 
increases muscle activation of both agonist and antagonist 
when muscle length error is either positive or negative, 
resulting in co-contraction.  Because the V is asymmetric, 
the activation of the muscle that was lengthened increases 
more, contributing to the development of a feedforward term 
to cancel the error. Franklin et al [11] showed how changes 
in muscle activation recorded for movements in a variety of 
novel dynamic environments fall along this V.  This simple 
update rule also accurately predicts directionally-dependent 
changes in limb impedance in unstable force fields. 

  
Figure 1.  Muscle activation update law proposed by Franklin et al. [11].  
Shown are update rules for two opposing muscles.  Units are arbitrary. 

Because the point of the “V” function is sunken below the 
x-axis, this update law reduces muscle activation when 
muscle error is zero – i.e. it predicts slacking.  The form of 
slacking predicted is a linear rather than exponential 
decrease in activation, since muscle activation is reduced by 
a constant (defined by how sunken the V is) for each 
movement when error is small.   

The force decay data from the Scheidt et al. error clamp 
experiment appeared to be exponential (see Figure 5 in [4]). 
A possible way to account for an exponential decay in the 
Franklin framework is the following update law: 

1 1( )i i iu fu G e+ = −    (4) 
where 0 < f < 1 is a forgetting factor, and the error function 
G1 is now a non-sunken, asymmetric V. Equation 4 predicts 
an exponential decrease in muscle activation when muscle 
length error is zero.  The change in muscle activation ui+1 - 
ui as a function of the muscle length error ei is still a sunken, 
asymmetric “V”, albeit noisier, consistent with data. 

C. Continuous-time model of slacking 
The models examined so far have assumed that the motor 

system controls movements in a discrete fashion; that is, for 
the ith movement, the motor system selects a feedforward 
control parameter ui and measures an error signal ei.  
Movement tasks such as target tracking, which are common 
in therapy applications of robotic orthoses, do not fit well in 
this paradigm. We previously proposed [12] a simple 
continuous-time model of slacking during such a task: 

h h hu k e g e f u= − − −& &    (5) 
This controller has three terms that model known aspects of 
human motor behavior. The first term is a proportional 
position control term with stiffness kh. This term 
corresponds to the well-known spring-like impedance of 
human limbs, which arises due to muscle mechanics and 
segmental reflexes. The second term is an integral position 
control term  
with gain gh. This term acts like an error-based adaptive 
controller that forms an internal model of the forces required 
to lift the arm to the target: if there is a persistent error e, 
then this term causes the controller to increase its output to 
reduce this persistent error (note that u increases in the 
direction opposite to e to reduce e). The third term is a 
slacking term with a forgetting rate fh ≥ 0. This term 
decreases force output when error is zero. We showed 

2130



  

previously that this model accurately predicts that people 
with and without a stroke will allow an arm exoskeleton 
controlled with an adaptive controller to take over force 
generation during a target tracking task, unless the robot 
contains a slacking term [12]. For this experiment, the time 
constant of human slacking (i.e. 1/fh) was about 100 sec [6].  
 The integral term in Equation 5 is unrealistic for human 
movement control, as it does not take into account delays 
between error sensing and force generation. We recently 
performed an experiment in which we applied vertical step 
force perturbations of random magnitude to the arm as 
healthy subjects tried to keep a cursor representing hand 
position in a target. We obtained good fits to the data 
(Figure 2) using a model of the following form: 

RMe Be Ke F u+ + = +&& &   (6) 
That is, the human arm acts like a second order system 
driven by the force from the robot FR and the force from the 
human muscles u. When FR changes by ΔFR due to an 
applied perturbation, we found that a model in which u 
changes by -γΔFR approximately 500 ms later fits the 
tracking error history well (Figure 2). The mean of the 
constant γ was 0.94 +/- 0.034 and is significantly less than 1, 
(7 healthy subjects, p < 0.005, t-test).  Thus, the model 
suggests that the human motor system measures error, and 
within a 500 ms period, estimates and applies an appropriate 
force to cancel this error, but slightly underestimates this 
force.  A continuous time model of human slacking is thus: 

( )hu f u G e= − −&    (7) 
where the slacking rate fh ≥ 0 determines the time constant 
of slacking when error is small, and the update function G 
represents the process in which the motor system cancels 
changes in applied, external force 500 ms after they are  
applied, slightly underestimating the applied force. 

 
Figure 2.  Example fits to experimental data using the model of equation 
(7).  The units of the y-axis are hand position in meters, and that of the x-
axis is time in seconds. In this experiment a robotic exoskeleton applied a 
step force at time 0 to the human arm upward (left) or downward (right).  
The human arm behaved like a 2nd-order system responding with a change 
in muscle force equal to the perturbing force, but applied 500 ms later.  

III. CONSEQUENCES OF SLACKING FOR ROBOTIC ORTHOSES   

A. Human slacking during robot-assisted therapy  
Wolbrecht et al. [6] developed an adaptive controller for a 

pneumatic arm orthosis that learns the dynamics of the 
patient’s arm, ability and effort at the same time [4]. The 
device can provide compliant assistance as needed for a 

patient to actively participate and be able to complete target 
tracking tasks. They found, however, that both healthy 
subjects and people with a stroke tended to let the robot take 
over the task of lifting the arm, unless the robot controller 
included a slacking term.  

Consistent with this finding, Fig. 3 shows data from a 
recent experiment in which non-disabled subjects tried to 
hold their hand in a fixed location, and we varied the robot 
slacking rate. After 30 seconds, the robot began to take over 
lifting, if the slacking rate was small. The model of Equation 
7 predicts this behavior, as shown in Fig. 3.  

 
Figure 3. Actual (dashed lines) and modeled (solid lines) human slacking in 
response to assistance provided by an adaptively controlled robotic arm 
exoskeleton. The dashed line shows data measured from an experiment in 
which 7 healthy subjects tried to keep their hand position at a constant 
location, as a robotic exoskeleton generated assistance forces according to 
an adaptive algorithm described in [6], with 4 different robot forgetting 
rates fr (0, 0.1, 0.5, and 1). The y-axis shows the amount of robot assistance 
force after 30 seconds.  Note that the robot tended to “take over” lifting the 
arm (and the subject slacked) when the robot forgetting rate was small.  The 
solid lines show results of simulations of the model of Equation 7, with 
various human forgetting rates (0, 0,001, 0.002, 0.0029, 0.01, 0.1).  The 
model predicts the slacking tendency, with the best fit for fh = 0.0029, 
which corresponds to a slacking time constant of 350 s. 

B. Learning to be energy efficient in response to an 
assistive ankle orthosis 
Gordon et al. [13] recently showed that healthy human 

subjects learn to reduce their ankle planar flexor (soleus) 
muscle activation levels when walking in an orthosis that 
assists in ankle plantar flexion during stance. We show here 
that the  “sunken V”  model of Equation 3 [11]  predicts the 
observed change of muscle activation as stepping proceeded 
with the orthosis on. The slacking term in the Franklin et al. 
model is what accounts for the ability of the participants to 
learn to walk more efficiently with the orthosis. 

In this experiment, the ankle orthosis was a carbon fiber 
exoskeleton powered by an artificial pneumatic muscle 
working in parallel with the human ankle plantar flexor 
muscles. The artificial muscle was controlled using a 
proportional myoelectric control algorithm in which soleus 
surface EMG was rectified and smoothed (10 Hz cutoff) and 
used to control the air pressure in the pneumatic muscle. 

Figure 3A and 3C show the mean plantar flexor (soleus) 
and dorsiflexor (tibialis anterior) EMG measured from 10 
healthy participants as they walked on the treadmill at 1.25 
m/s [13]. The orthosis assistance was turned on at 10 
minutes 
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Figure 4: Model of slacking explains adaptation to a robotic ankle 
exoskeleton. Left: Actual ankle muscle EMG data from [13]. The orthosis 
power was turned on 13 minutes into stepping, and then off at about 43 
minutes.  Right: Model predictions for muscle activations using the Franklin 
et al. [11] sunken “V” model.  The human system worked quickly to correct 
ankle error (F). EMG was normalized to final baseline value. 
and then off at about 40 minutes. When it was turned on, 
both plantar flexor and dorsiflexor EMG increased, 
indicating co-contraction. Both muscles then slowly 
decreased activation as the participants continued to step 
with assistance from the orthosis. When the orthosis 
assistance was turned off, EMG temporarily increased again.  
All eight leg muscles measured showed initially increased 
activity [13], consistent with the use of co-contraction to 
initially cancel the orthosis perturbation. 

Figure 3B and 3D show that the Franklin et al. model can 
capture the basic features of the evolution of muscle 
activation. We assumed that the dynamics of the ankle were 
captured by a linear relationship between the muscle forces 
and ankle error, which is likely a good assumption at least 
for small perturbations. The model predicts the initial co-
contraction experimentally observed when the orthosis 
assistance was turned on, followed by a slow decrease in 
muscle activation, followed by a temporary increase again 
when the orthosis was turned off.  The rate of decrease is 
determined by how sunken the “V” is, suggesting that the 
ability of the human participant to learn to walk more 
efficiently in the orthosis is due to a slacking process. 

IV. DISCUSSION 
This paper described computational models of slacking 

and showed how these models predict the human response 
to assistance forces provided by robotic orthoses. In brief, 
slacking implements force conservation. For therapeutic 
applications, this means that slacking will tend to make 
people relax and let the robotic orthosis do the work, which 
could have detrimental consequences for use-dependent 
plasticity. Indeed, it was recently found that people with a 
spinal cord injury consumed 50% less energy when walking 
in a relatively rigid gait orthosis as compared to walking 
with assistance from a physical therapist [14]. Therapeutic 
training with this gait orthosis was approximately half as 

effective as training with human therapists for SCI patients 
who had some initial capability to walk, albeit slowly [15, 
16]. Incorporating slacking into control algorithms for 
robotic therapy devices may help solve this problem [6, 12], 
as predicted by the computational models developed here. 

For force-amplifying orthoses intended to assist people in 
achieving desired tasks, the fact that slacking implements 
force conservation is beneficial: it means that people will 
learn to adapt to the assistance provided by the orthosis, as 
shown with the simulations presented here. Future research 
should examine the conditions under which the slacking 
process would not be expected to produce an optimal 
energetic response, and then address this potential problem. 
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