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Abstract— Pain assessment in patients who are unable to ver-
bally communicate with medical staff is a challenging problem
in patient critical care. The fundamental limitations in sedation
and pain assessment in the intensive care unit (ICU) stem
from subjective assessment criteria, rather than quantifiable,
measurable data for ICU sedation and analgesia. This often
results in poor quality and inconsistent treatment of patient
agitation and pain from nurse to nurse. Recent advancements in
pattern recognition techniques using a relevance vector machine
algorithm can assist medical staff in assessing sedation and pain
by constantly monitoring the patient and providing the clinician
with quantifiable data for ICU sedation. In this paper, we show
that the pain intensity assessment given by a computer classifier
has a strong correlation with the pain intensity assessed by
expert and non-expert human examiners.

I. INTRODUCTION

Pain assessment in patients who are unable to verbally

communicate with the medical staff is a challenging problem

in patient critical care. This problem is most prominently

encountered in sedated patients in the intensive care unit

(ICU) recovering from trauma and major surgery, as well

as infant patients and patients with brain injuries [1], [2].

Current practice in the ICU requires the nursing staff in

assessing the pain and agitation experienced by the patient,

and taking appropriate action to ameliorate the patient’s

anxiety and discomfort.

The fundamental limitations in sedation and pain assess-

ment in the ICU stem from subjective assessment criteria,

rather than quantifiable, measurable data for ICU sedation.

This often results in poor quality and inconsistent treatment

of patient agitation from nurse to nurse. Recent advances

in computer vision techniques can assist the medical staff

in assessing sedation and pain by constantly monitoring the

patient and providing the clinician with quantifiable data for

ICU sedation. An automatic pain assessment system can be

used within a decision support framework which can also

provide automated sedation and analgesia in the ICU [3].

In order to achieve closed-loop sedation control in the ICU,

a quantifiable feedback signal is required that reflects some

measure of the patient’s agitation. A non-subjective agitation

assessment algorithm can be a key component in developing

closed-loop sedation control algorithms for ICU sedation.

Individuals in pain manifest their condition through “pain

behavior” [4], which includes facial expressions. Clinicians
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regard the patient’s facial expression as a valid indicator for

pain and pain intensity [5]. Hence, correct interpretation of

the facial expressions of the patient and its correlation with

pain is a fundamental step in designing an automated pain

assessment system. Of course, other pain behaviors including

head movement and the movement of other body parts, along

with physiological indicators of pain, such as heart rate,

blood pressure, and respiratory rate responses should also

be included in such a system.

The current clinical standard in the ICU for assessing

the level of sedation is an ordinal scoring system, such

as the motor activity and assessment scale (MAAS) [6] or

the Richmond agitation-sedation scale (RASS) [7], which

includes the assessment of the level of agitation of the

patient as well as the level of consciousness. Assessment

of the level of sedation of a patient is, therefore, subjective

and limited in accuracy and resolution, and hence, prone to

error which in turn may lead to oversedation. In particular,

oversedation increases risk to the patient since liberation

from mechanical ventilation, one of the most common life-

saving procedures performed in the ICU, may not be possible

due to a diminished level of consciousness and respiratory

depression from sedative drugs resulting in prolonged length

of stay in the ICU. Alternatively, undersedation leads to

agitation and can result in dangerous situations for both

the patient and the intensivist. Specifically, agitated patients

can do physical harm to themselves by dislodging their

endotracheal tube which can potentially endanger their life.

In addition, an intensivist who must restrain a dangerously

agitated patient has less time for providing care to other

patients, making their work more difficult.

Computer vision techniques can be used to quantify agi-

tation in sedated ICU patients. In particular, such techniques

can be used to develop objective agitation measurements

from patient motion. In the case of paraplegic patients, whole

body movement is not available, and hence, monitoring the

whole body motion is not a viable solution. In this case,

measuring head motion and facial grimacing for quantifying

patient agitation in critical care can be a useful alternative.

Although there is a vast potential for using computer

vision for agitation and pain assessment, there are very

few articles in the computer vision literature addressing this

issue. In [8], an agitation assessment scheme is proposed for

patients in the ICU. The approach of [8] is based on the

hypothesis that facial grimacing induced by pain results in

additional “wrinkles” (equivalent to edges in the processed

image) on the face of the patient, and this is the only

factor they use in assessing pain. Although this approach

is computationally inexpensive and especially appealing for
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a real-time decision support system, it can be limiting since

it does not account for other facial actions (e.g., smiling,

crying, etc.), which may not necessarily correspond to pain.

The authors in [2], [9] use various face classification tech-

niques including support vector machines (SVM) and neural

networks (NN) to classify facial expressions in neonates into

“pain” and “non-pain” classes. Such classification techniques

were shown to have reasonable accuracy.

In this paper, we extend the classification technique ad-

dressed in [2], [9] to distinguish pain from non-pain as well

as assess pain intensity using a relevance vector machine

(RVM) classification technique [10]. The RVM classification

technique is a Bayesian extension of SVM which achieves

comparable performance to SVM while providing posterior

probabilities for class memberships and a sparser model.

In a Bayesian interpretation of probability, as opposed to

the classical interpretation, the probability of an event is an

indication of the uncertainty associated with the event rather

than its frequency [11]. If data classes represent “pure” facial

expressions, that is, extreme expressions that an observer

can identify with a high degree of confidence, the posterior

probability of the membership of some intermediate facial

expression to a class can provide an estimate of the intensity

of such an expression. This, along with other pain behaviors,

can be translated into one of the scoring systems currently

being used for assessing sedation (e.g., MAAS or RASS).

II. SPARSE KERNEL MACHINES

In this section, we discuss two sparse kernel-based algo-

rithms, namely, the support vector machine and the relevance

vector machine. For a more comprehensive discussion on

these methods, see [11].

A. Support Vector Machine Algorithm

The support vector machine (SVM) algorithm [11] is a

sparse kernel algorithm used in classification and regression

problems. Here we will briefly discuss the SVM framework

for the two-class classification problem. Let the training

set be given by x1, x2, . . . , xN , with target values given

by z1, z2, . . . , zN , respectively, where xn ∈ R
D and zn ∈

{−1, 1}, n = 1, 2, . . . , N . Moreover, assume that this train-

ing set is linearly separable in a feature space R
M defined

by the transformation φ : R
D → R

M ; that is, there exists a

linear decision boundary in the feature space separating the

two classes.

To classify a new data point x ∈ R
D by predicting its

target value z define y(x) = wTφ(x) + b, where w ∈
R

M is a weight vector and b ∈ R is a bias parameter.

This representation can be rewritten in terms of a kernel

function as y(x) =
∑N

n=1
anznk(x, xn) + b, where an,

n = 1, 2, . . . , N , and b are parameters determined by the

training set xn and zn, n = 1, 2, . . . , N , and k(·, ·) is the

kernel function. The sign of the function y(x) determines

the class of x. More specifically, for a new data point x, the

target value is given by z = sgn(y(x)), where sgn y ,
y
|y| ,

y 6= 0, and sgn(0) , 0. In the SVM approach the parameters

w and b are chosen such that the margin, that is, the minimum

distance between the decision boundary and the data points,

is maximized. Hence, only a subset of the training data (i.e.,

support vectors) is used to determine the decision boundary.

It can be shown that the solution to the SVM problem

results in a convex optimization problem, and hence, a global

optimum is guaranteed.

In the case where there is an overlap between the two data

classes, the SVM algorithm can be modified by allowing

misclassification of the data points. In this case the margin

is maximized while penalizing misclassified points. Such a

trade-off is controlled by a positive complexity parameter C,

which is determined using a hold-out method such as cross-

validation [11].

B. Relevance Vector Machine Algorithm

The SVM algorithm, although a powerful classifier, has a

number of limitations. A key deficiency of the approach is the

fact that the output of the SVM algorithm is the classification

decision and not the class membership posterior probability.

As will be discussed in Section III, methods which possesses

an inherent Bayesian structure are more powerful and can

provide more information. Such methods not only classify

a new point, but also provide a degree of uncertainty (in

terms of posterior probabilities) for such a classification.

The relevance vector machine (RVM) algorithm [10] is a

Bayesian sparse kernel algorithm, which can be regarded as

the Bayesian extension of the SVM algorithm.

Next, we briefly review the method for the classification

problem involving two data classes, namely C1 and C2. Let

the training set be given by x1, x2, . . . , xN , with target values

given by z1, z2, . . . , zN , where xn ∈ R
D and zn ∈ {0, 1},

n = 1, 2, . . . , N , xn ∈ C1 if zn = 1, and xn ∈ C2 if zn = 0.

For a new data point x ∈ R
D, we predict the associated

class membership posterior probability distribution, namely,

p(Ck|x), k = 1, 2, where p(x) represents the probability

density function of the random variable x and p(Ck|x) is

the conditional probability of the data class Ck given the

data point x. The class membership posterior probability for

a given data point x is given by

p(Ck|x) = σ(wTφ(x)), (1)

where φ : R
D → R

M is a fixed feature-space transformation,

with components φ(x) = [φ1(x), φ2(x), . . . φM (x)]T ∈
R

M , w = [w1, w2, . . . wM ]T ∈ R
M is the weight vector,

and σ(·) is the logistic sigmoidal function defined by σ(s) =
1

1+e−s
. Note that the RVM algorithm is a special case of the

above model. Specifically, in the RVM algorithm wTφ(x)
in (1) has a special form (similar to the SVM algorithm)

given by
∑N

n=1
wnk(x, xn) + b, where k(·, ·) is the kernel

function. Hence, the class membership posterior probability

for a given data point x is given by

p(Ck|x) = σ

(

N
∑

n=1

wnk(x, xn) + b

)

. (2)

In the sequel, we consider the general formulation (1).

Each weight parameter wi, i = 1, . . . , M , in (1) is assumed
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to have a zero-mean Gaussian distribution, and hence, the

weight prior distribution is given by

p(w|α) =

M
∏

i=1

N (wi|0, α−1

i ), (3)

where αi, i = 1, 2, . . . , M , is the precision corresponding to

the weight component wi, α = [α1, α2, . . . αM ]T ∈ R
M ,

and N (x|µ, σ2) represents the normal distribution with mean

µ and variance σ2. The parameters αi, i = 1, 2, . . . , M , in

the prior distribution (3) are called the hyperparameters.

The hyperparameters αi, i = 1, 2, . . . , M , can be deter-

mined by maximizing the marginal likelihood distribution

p(w|z, α), where z = [z1, z2, . . . zN ]T ∈ R
N . As a result

of the maximization of the marginal likelihood distribution,

a number of the hyperparameters αi approach infinity. Thus,

the corresponding weight parameter wi will be centered at

zero, and hence, the corresponding component of the feature

vector φi(x) plays no role in the prediction, resulting in a

sparse predictive model. For further details of this approach,

see [10], [11].

III. PAIN AND PAIN INTENSITY ASSESSMENT

In this section, we use the classification techniques de-

scribed in Section II in order to assess pain in infants

using their facial expressions. For our data set we use the

Infant Classification of Pain Expressions (COPE) database

[2]. As was shown in [2], the SVM can classify facial

images into two groups of “pain” and “non-pain” with an

accuracy between 82% to 88%. Here we extend the results

of [2] to additionally assess pain intensity using the class

membership posterior probability. Note that although we

consider infants, studies have shown that the pain-induced

facial expressions in newborns are similar to those observed

in older children and adults [12]. Hence, we expect that the

approach discussed in this paper to be applicable to adult

pain assessment as well.

Before applying the classification techniques to the facial

images, we give a brief description of the infant COPE

database used in our experimental results.

A. Infant COPE Database

The infant COPE database is composed of 204 color

photographs of 26 Caucasian neonates (13 boys and 13 girls)

with an age range of 18 hours to 3 days. The photographs

were taken after a series of stress-inducing stimuli were

administered by a nurse. The stimuli consist of the following

[2]:

i) Transport from one crib to another.

ii) Air stimulus, where the infant’s nose was exposed to

a puff of air.

iii) Friction, where the external lateral surface of the heel

was rubbed with a cotton wool soaked in alcohol.

iv) Pain, where the external surface of the heel was

punctured for blood collection.

The facial expressions induced by the first three stimuli

are classified as non-pain. Four photographs of a subject are

given in Figure 1. One of the challenges in the recognition

of pain, even for clinicians, is the ability to distinguish an

infant’s cry induced by pain and some other non-painful

stimulus.

Fig. 1. Four different expressions of a subject. The 2 left images correspond
to non-pain, whereas the 2 right images correspond to pain.

B. Pain Recognition using Sparse Kernel Machine Algo-

rithms

The classification techniques discussed in Section II were

used to identify the facial expressions corresponding to pain.

A total of 21 subjects from the infant COPE database were

selected such that for each subject at least one photograph

corresponded to pain and one to non-pain. The total number

of photographs available for each subject ranged between 5

to 12, with a total of 181 photographs considered. We applied

the leave-one-out method for validation [11].

In the preprocessing stage, the faces were standardized for

their eye position using a similarity transformation. Then, a

70 × 93 window was used to crop the facial region of the

image and only the grayscale values were used. For each

image, a 6510-dimensional vector was formed by column

stacking the matrix of intensity values. We used the OSU

SVM MATLAB Toolbox [13] to run the SVM classification

algorithm. The classification accuracy for the SVM algorithm

with a linear kernel was 90%, where, as suggested in [2],

we chose the complexity parameter C = 1. The number of

support vectors averaged 5. Applying the RVM algorithm

with a linear kernel to the same data set resulted in an

almost identical classification accuracy, namely, 91%; while

the number of relevance vectors was reduced to 2. However,

in 5 out of the 21 subjects considered, the algorithm did

not converge. This is due to the fact that, in contrast to the

SVM algorithm, the RVM algorithm involves a non-convex

optimization problem [11].

C. Pain Intensity Assessment

In addition to classification, the RVM algorithm provides

the posterior probability of the membership of a test image to

a class. As discussed earlier, using a Bayesian interpretation

of probability, the probability of an event can be interpreted

as the degree of the uncertainty associated with such an

event. This uncertainty can be used to estimate pain intensity.

In particular, if a classifier is trained with a series of facial

images corresponding to pain and non-pain, then there is

some uncertainty for associating the facial image of a person

experiencing moderate pain to the pain class. The efficacy

of such an interpretation of the posterior probability was

validated by comparing the algorithm’s pain assessment

with that assessed by several experts (intensivists) and non-

experts.
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In order to compare the pain intensity assessment given by

the RVM algorithm with human assessment, we compared

the subjective measurement of the pain intensity assessed

by expert and non-expert examiners with the uncertainty in

the pain class membership (posterior probability) given by

the RVM algorithm. We chose 5 random infants from the

COPE database, and for each subject two photographs of

the face corresponding to the non-pain and pain conditions

were selected. In the selection process, photographs were

selected where the infant’s facial expression truly reflected

the pain condition—calm for non-pain and distressed for

pain—and a score of 0 and 100, respectively, was assigned

to these photographs to give the human examiner a fair prior

knowledge for the assessment of the pain intensity.

Ten data examiners were asked to provide a score ranging

from 0 to 100 for each new photograph of the same subject,

using a multiple of 10 for the scores. Five examiners with no

medical expertise and five examiners with medical expertise

were selected for this assessment. The medical experts were

members of the clinical staff at the intensive care unit of

the Northeast Georgia Medical Center, Gainesville, GA,

consisting of one medical doctor, one nurse practitioner, and

three nurses. They were asked to assess the pain for a series

of random photographs of the same subject, with the criterion

that a score above 50 corresponds to pain, and with the higher

score corresponding to a higher pain intensity. Analogously,

a score below 50 corresponds to non-pain, with the higher

score corresponding to a higher level of discomfort. The

posterior probability given by the RVM algorithm with a

linear kernel for each corresponding photograph was rounded

off to the nearest multiple of 10.

The pain scores for the 5 infant subjects are given in

Figures 2 – 6, where the average score of the expert and non-

expert human examiners are compared to the score given by

the RVM algorithm. We used the weighted kappa coefficient

[14] to measure the agreement in the pain intensity assess-

ment between the human examiners and the RVM algorithm.

This coefficient is 0.48 for human experts and 0.52 for non-

experts as compared with the RVM for the 5 subjects con-

sidered in the study which shows a moderate agreement. The

results show an almost identical classification accuracy for

a binary classification (with a score above 50 corresponding

to pain). In particular, the non-expert human examiner, the

expert human examiner, and the RVM classification accuracy

is given by 87%, 85%, and 85%, respectively. Moreover, the

results show that the expert human and non-expert human

examiners tend to give the same pain intensity score based

on the photographs of the facial expressions.
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Fig. 4. Pain score for Subject 3
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