
  

  

 
Abstract—Animal Models are used extensively in basic 

epilepsy research. In many studies, there is a need to accurately 
score and quantify all epileptic spike and wave discharges 
(SWDs) as captured by electroencephalographic (EEG) 
recordings. Manual scoring of long term EEG recordings is a 
time-consuming and tedious task that requires inordinate 
amount of time of laboratory personnel and an experienced 
electroencephalographer. In this paper, we adapt a SWD 
detection algorithm, originally proposed by the authors for 
absence (petit mal) seizure detection in humans, to detect 
SWDs appearing in EEG recordings of Fischer 334 rats. The 
algorithm is robust with respect to the threshold parameters. 
Results are compared to manual scoring and the effect of 
different threshold parameters is discussed. 

I. INTRODUCTION 
NIMAL modeling of absence (petit mal) seizures has 
been conducted in numerous studies using mice and 
rats. The defining EEG event in these models is a 7-12 

Hz generalized spike and wave discharge (SWD; Fig. 1A). 
In general, SWDs are episodes of abrupt onset, variable 
duration (seconds to minutes), and abrupt termination that 
usually occur during passive wakefulness and light sleep [3] 
[18]. The episodes are characterized by behavioral arrest and 
decreased responsiveness, with or without rhythmic whisker 
twitching [2] [18]. Additional behavioral features that may 
accompany SWDs include accelerated breathing, head tilt, 
eye twitching [3], and head and neck twitching associated 
with gradual head lowering [8]. 
    Studies of generalized SWDs are divided into two 
categories. Acquired SWD models are based upon the use of 
chemical agents to stimulate the expression of SWDs, or to 
decrease the threshold for their expression. Spontaneous 
SWD models, by contrast, are based upon inherited factors 
that lead to the development of unprovoked generalized 
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SWD activity. Included in this category are WAG/Rij rats 
(Wistar Albino Glaxo strain, bred in Rijswijk, Netherlands) 
and genetic absence epilepsy rats from Strasbourg 
(GAERS), two Wistar-derived rat strains that have been 
selectively inbred to increase their propensity to express 
generalized SWDs [5]. A majority of generalized SWD 
studies have been performed using these rat strains; 
however, SWDs can be seen in many common laboratory rat 
strains, both inbred and outbred. Wistar-unrelated inbred 
strains include Fischer 344 (F344), Brown Norway, and dark 
agouti [3] [14] [18]. Common outbred strains include 
Sprague-Dawley, Wistar, and Long-Evans [2] [12] [16] [18]. 

Recently data mining, signal processing, and optimization 
have been used to provide increasing numbers of decision-
assisting tools to clinical and basic researchers [10] [11]. 
Animal models of absence seizures frequently require 
accurate scoring and quantification of the absence events 
(SWDs) [6] [7] [8] [9]. This task is usually performed 
manually by laboratory personnel and an experienced 
electroencephalographer; manual scoring is a time-
consuming and tedious task and is always subject to 
detection errors due to examiner experience and fatigue. 
Therefore, an improved automated SWD algorithm is very 
desirable. 

There are very few studies in the literature related to 
automated SWD detection in animal models. In [17] an 
automatic SWD detector was introduced based on the first 
derivative of EEG signals, called the “steepness of the 
signals.” The SWDs are detected when the value of 
steepness exceeds the threshold value in certain consecutive 
EEG epochs. Despite the reported high accuracy of this 
method, it sometimes misclassifies eye movement artifacts 
as absence seizures. In [4] Fanselow et al. described a 
method based on the maximum absolute value of the EEG 
amplitude in the rat model; the SWDs in the EEG recordings 
were labeled when the amplitude was greater than the 
threshold for a manually-defined time horizon [4]. Again, 
this method could not distinguish between SWDs and high 
amplitude artifacts. A so-called “spectral comb-based” 
analytical method was proposed by [15] and used for 
detecting SWDs in EEG recordings using the GAERS strain. 
The authors used the time frequency spectrum produced by 
Short Time Fourier Transform (STFT) to extract features 
that enabled seizure detection. 
 
    In this paper, we adapt the algorithm previously proposed 
by the authors for automatic detection and quantification of 
SWD epochs in human absence epilepsy [19] to a rat model 
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of absence epilepsy. The paper is organized as follows: 1) in 
section II, we describe the methodology followed by a 
description of the dataset and the algorithm; 2) in section III, 
we present the results together with the analysis related to 
the robustness of the algorithm; and 3) in section IV, we 
discuss the results and the choice of the threshold 
parameters. 

II. METHODS 

A. Dataset description 
Eight-hour recordings were acquired from total four 4-

month old F344 rats. In total, 6 screw electrodes were 
implanted in the skull of each animal: 2 frontal (F3, F4), 2 
central (C3, C4), and 2 parietal (P3, P4). The electrode 
configuration is shown in Fig. 1B. In total, 8 differential 
channels were computed for the purpose of the study: F3-
C3, C3-P3, F3-P3, F4-C4, C4-P4, F4-P4, C3-C4, P3-P4 
(Fig. 1A). Entire long term video-EEG recordings were 
visually scanned by laboratory research assistants to detect 
and score SWD occurrence; identified SWDs were 
confirmed by an electroencephalographer. The exact number 
of epochs and their cumulative time during the 8 hours of 
recordings can be seen in the Table I. 

 
 TABLE I 

NUMBER OF SWD EPOCHS SCORED FOR EACH RAT AND THE 
CUMMULATIVE TIME OF SWDS DURING THE 8-HOUR 

RECORDINGS 
 Number of 

SWD 
epochs 

Cummulative 
ictal activity 

(epochs) 

Total 
recording 

time(hours) 
Rat A 53 99.33 8.27 
Rat B 43 116.35 8.09 
Rat C 81 368.53 8.00 
Rat D 45 133.50 8.10 
Total 202 717.71 32.46 

 
 

B. Algorithm 
For detecting SWD discharges in a rat model, we propose 

a modification of our algorithm originally proposed for 
automatic SWD detection in human data [19]. The proposed 
detection scheme is based in time frequency decomposition 
of the EEG employing the wavelet transform. Wavelet 
transform has profound advantages over the classical STFT 
because one can increase the scale (or frequency) resolution 
while keeping the same time resolution. Subsequently, the 
variance profile of the EEG is computed and seizures are 
detected by a double thresholding process. The algorithm 
was found to have high sensitivity and a minimal false 
positive detection rate for SWDs localized in the frequency 
band of ~ 3Hz. Here we describe our detection algorithm in 
three simple steps. 
 

 

 
1) Wavelet decomposition:First, we decompose every 

differential channel of the raw EEG recordings, which can 
be represented as a time series X(t), into a time-scale domain 
using the wavelet transform: 

, where 

. The function  is the mother 
wavelet function. For this study, we used the Morlet mother 
wavelet function, which has analytic expression given by: 

. Morlet mother wavelet is used extensively 
in EEG analysis due to its minimum time-bandwidth 
product, its infinite differentiation, and its explicit 
expression [1]. A time scale plot of a recorded absence 
seizure is shown in Fig. 2. 

We can convert scales into frequencies using , 
where  is the central frequency of the mother wavelet, in 
our case, 0.81Hz, and  is the sampling period. 
Among all the scales that we can decompose the EEG signal, 
we are interested in those that correspond to the frequency 
band in which SWD activity appears (~7 Hz). For this we 
keep only the scales 19-25 and sum them for every channel 
(Fig. 3). 

 
Fig. 1.  (A) Sample of a generalized SWD recorded from a Fischer 
344 rat. The F3, C3, and P3 abbreviations refer to skull screw 
electrodes overlying left frontal, central, and parietal regions of the 
animal’s brain, respectively; F4, C4 and P4 refer to the brain areas on 
the right. An “F3-C3” label corresponds to an EEG channel produced 
by the output of one differential amplifier with inputs from the F3 and 
C3 electrodes. (B) Electrode placement used in the study. 

Fig. 2.  Typical absence seizure and the corresponding scalogram prior to 
the seizure (onset after sample 6000). Two electrode artifacts (onset after 
samples 2000 and 4000) were rejected by keeping only the scales (a=19-
25) that correspond to the frequency band of interest 
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  2)  Variance profile computation:Based on the observation 
that the high SWD activity produces wavelet profiles of high 
variance, we compute the variance profile for each channel 
using a sliding window of width k=200 samples (i.e., 
corresponding to 1 sec of recording). All variance profiles 
for all channels are summed to reject noise and artifacts that 
are not generalized (i.e., not appearing in all channels). A 
variance profile of the seizure can be seen in Fig. 4 (blue 
line). 

 

 
3) Thresholding: For accurate localization of the onset and 

offset times of a seizure based on the variance profile of the 
EEG recordings, we used a double thresholding technique 
(Fig. 4). We applied a high threshold to the variance to 
detect the number of epochs; the high threshold was chosen, 
in part, to avoid detection of artifacts (false positives). 

For the sample points of the variance profile curve that 
“hit” the high threshold, we perform a local search to specify 
the exact onset and offset sample points of the seizure. More 
precisely, with reference to Fig 4, for the first point that 
corresponds to an offset (first point that high line hits the 
variance profile), we search backwards to determine the first 
time that the variance curve falls below the low threshold 
(first point that low threshold intersects with variance 
profile). For the second point, we search forward to 
determine the first point that the variance curve drops below 
the low threshold. For the third and fourth points, we repeat 
the same search process (third point will correspond again to 
an onset and the fourth point to an offset). It is worth noting 
that with the low thresholding search we are able to merge 
epochs that were detected as two distinct events from the 
high thresholding (i.e., in this example the onset and the 

offset of both epochs will be the same). Finally, the 
algorithm returns only the unique events (it rejects 
duplicates). 

III. RESULTS 
The detection sensitivity and false positive rate are highly 
dependent on the parameters of the algorithm (thresholds). 
We experimented with different thresholds to: 1) investigate 
the robustness of the algorithm, i.e., the change of the output 
with small changes of the input parameters; and 2) describe 
how the sensitivity versus specificity changes with respect to 
the input parameters. For these aims the algorithm was 
applied using 10 different thresholds and sensitivity and 
specificity were computed. Sensitivity was defined as the 
number of epochs detected over the total number of scored 
epochs, and false positive rate was defined as the number of 
false positives over the corresponding recording time. 

The plot of sensitivity versus specificity is the so-called 
receiver operating characteristic (ROC) curve. The ROC is 
very useful in visualizing how the sensitivity percentage 
changes as a function of missed seizure rate and help the end 
user to decide the optimal point (corresponding threshold) 
that fits a specific application. In Fig. 5 (A&B), one can see 
the ROC curves for the four rats separately and the mean 
curve for all four rats. 

One drawback of this definition of sensitivity and false 
positive rate is that all epochs are treated in the same manner 
without taking into consideration the epoch length. In this 
way, one SWD epoch of 10 sec length will contribute the 
same as an epoch of 1 sec. Given this consideration, 
sensitivity and specificity can be defined based on the 
cumulative SWD time or “cumulative epileptiform burden.” 
In this case, sensitivity is defined as the cumulative detected 
time (in sec) over the total time, whereas the false positive 
rate is defined as the cumulative missed seizure time over 
the corresponding time of the recordings. 

The ROC curves for the four rats and the mean curve for 
all four rats can be seen in Fig. 5(C&D). The fact that the 
ROC curve using the cumulative time (Fig. 5B) has higher 
sensitivity values compared to the that with the detected 
number of epochs (Fig. 5D) means that the missed epochs 
are shorter compared to the detected epochs. This is 
consistent with previous results in absence epilepsy 
detection [19]. It is worth mentioning that in the current 
study we considered SWD epochs of all lengths. In clinical 
practice, a frequently encountered issue is whether SWDs 
are sufficiently long to result in an absence seizure (e.g., a 
0.5-sec SWD epoch would not be clinically significant). 
Under such assumptions, the detection sensitivity and false 
positive rate would improve drastically. Therefore, the error 
analysis presented here can be viewed as an upper limit of 
the error range. With regard to the second parameter of the 
algorithm (low threshold), it determines the accuracy of the 
seizure onset and offset detection. It is easy to recognize 
from Fig. 5 that changes of the low threshold 
would modify the onset and offset detection point by some 
number of sample points, which correspond to 1/200 sec 
each. 
 

Fig. 3.  Sum of scales of interest (19 to 25) 

Fig. 4.  High threshold illustrated in red detects two distinct epochs of 
SWDs. For each epoch detected, we try to find the nearest point at 
which the variance value drops below the low threshold. First 
thresholding detects two distinct epochs that are merged by the low 
thresholding search.
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IV. DISCUSSION AND CONCLUSIONS 
    In this paper, we presented an adaptation of the algorithm 
proposed for human absence epilepsy [19] for the detection 
of SWDs in rat model of absence epilepsy. The proposed 
algorithm is robust with respect to the input parameters, 
which means that the output (detected epochs) cannot differ 
significantly when small changes are made to the threshold 
parameters. In addition, the ROC analysis shows that high 
sensitivity rates (~ >90%) can be achieved along with a low 
false positive rate (~ 2-4 false positive epochs per hour). 
When considering the cumulative time of the SWD epochs 
instead of the absolute number of the epochs, the algorithm 
demonstrates, on average, over 90% accuracy while the total 
missed SWD time doesn’t exceed 8.5 sec per hour. 
Importantly, the sensitivity percentages and the false 
positive rates can increase dramatically when epochs longer 
than some predefined duration are considered. However, an 
optimal threshold parameter cannot be proposed because the 
desired sensitivity and false positive rate are highly 
application-dependent. These results encourage us to 
generalize the detection methodology into other generalized 
EEG patterns that appear in specific frequency bands while 
further investigation and experiments are ongoing to reveal 
potential imperfections of the algorithm. 
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Fig. 5.  (A) ROC for four individual rats using number of epochs (B) 
the average curve for all rats using number of epochs (C) ROC for 
four individual rats using length of epochs (D) the average curve for 
all rats using length of epochs. 

2187


	MAIN MENU
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order
	Themes and Tracks

