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Abstract— In neurophysiology, it is important to determine
the causal relationships between neuronal sites. The major
problem with existing methods for quantifying the causality in
the brain, e.g. Granger causality, is that they assume an multi-
variate autoregressive signal model for the multi-channel EEG
signals and do not take the nonlinear dependencies between
neuronal oscillations into account. In this paper, we propose to
quantify the causality of the interactions based on the directed
information (DI) criterion, which measures the information
flow between two signals over time. The proposed measure
is applied to real EEG data from control and schizophrenic
subject groups. The significance of the computed DI values are
verified by Fourier bootstrapping technique.

I. INTRODUCTION

Neuroimaging technology such as the electroencephalo-

gram (EEG) makes it possible to record brain activity with

high temporal resolution and accuracy. However, the current

neuroimaging modalities reflect solely the local neural activ-

ities rather than the large-scale interactions between different

parts of the brain. There has been evidence that large-scale

functional integration of the brain is mediated by neuronal

groups that oscillate in the gamma band range (30 − 80
Hz). It has been found that schizophrenic patients exhibit

deficits in gamma band neural synchrony compared to nor-

mal subjects [1]. In order to get a better understanding of the

human brain and to develop alternative treatments to brain

diseases such as schizophrenia, measures of interdependence

and causality between brain activity recorded at different

neural sites are needed.

Different measures for quantifying the interaction and

direction between two signals include cross-correlation,

Granger causality, directed transfer function (DTF), partial

directed coherence (PDC), and information-theoretic mea-

sures [2], [3]. The cross-correlation function gives the linear

correlation between two variables X and Y as a function of

the lag time, which reflects the causal relationship between

the signals. Granger quantifies causality such that the time

series X causes Y if the variance of the prediction error for

Y at the present time is reduced by including past measure-

ments from X in the linear regression model. DTF and PDC

are similar to the Granger causality and quantify the linear

interaction assuming a multivariate autoregressive (MVAR)

model for the underlying signals. However, these approaches

may be misleading when applied to EEG signals which are
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known to have nonlinear dependencies [4]. The nonlinear

correlation coefficient, which describes the dependency of

two signals in a more general way, was proposed to address

this issue. However, inferring causality from the time delay

is not always straightforward. Freiwald [5] proposed a Local

Nonlinear Autoregressive model to test not only the causality

but also the degree of nonlinearity in the interaction between

neuronal sites. Nonetheless, the proposed model still requires

a priori knowledge about the underlying signal models,

which are often unknown and can introduce inaccuracies

due to the difficulty of parameter estimation. Therefore, a

model-free measure detecting both the linear and nonlinear

relationships is desired.

Information-theoretic methods are used to measure the

dynamic and directional information between two signals.

These measures include transfer entropy, directed infor-

mation and directed transinformation [6], [7], [8]. In this

paper, we apply Directed Information (DI) to quantify the

dynamic information flow across the different brain sites

without assuming any underlying signal models. Moreover,

we also evaluate whether there is increased information

flow in the gamma band between the frontal and parietal

lobes during target perception for control group compared

to schizophrenic group.

In this paper, we first introduce the directed information

measure in Section II. A statistical method to verify the

significance of the the computed DI values is given in

Section III. Finally, Section IV discusses the application of

this measure to EEG data from a study of schizophrenia.

II. DIRECTED INFORMATION

A. Definition

Different information measures have been proposed to

quantify the causal relationship between two random pro-

cesses. Some common measures are the “transfer en-

tropy”, “directed transinformation” and “directed informa-

tion”. “Transfer entropy” is presented by [6], which is a

conditional entropy defined by Kullback divergence, with the

difficulty of appropriate conditioning of transition probabili-

ties. “Directed transinformation” (T) introduced by Saito [7]

measures the information flow from the current sample of

one signal to the future samples of another signal given the

past samples of both signals and has the problem of not

discriminating between totally dependent and independent

processes. The directed information measure introduced by

Massey [8] is defined for two length N sequences X =
XN = X1, · · · ,XN and Y = Y N = Y1, · · · , YN as
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follows:

DI(XN → Y N ) =
N

∑

n=1

I(Xn;Yn|Y n−1), (1)

where Xn = (X1, . . . , Xn), Y n = (Y1, . . . , Yn) are the

length n random sequences.. I(X;Y ) is the mutual infor-

mation between two random variables X and Y .

Compared to other measures, the last measure is more

discriminative for measuring the dependency between two

time series and has been shown to be effective in different

applications [9].

B. Directed Information Computation

Mutual information between two N dimensional ran-

dom vectors can be written as I(XN ;Y N ) = H(XN ) −
H(XN |Y N ), where H(XN ) and H(XN |Y N ) are the Shan-

non entropy of XN and the conditional entropy of XN given

Y N , respectively. Using this definition, DI can be rewritten

in terms of individual and joint entropies of X and Y .

DI(XN → Y N ) =

N
∑

n=1

[H(Xn|Y n−1) − H(Xn|Y n)]

=

N
∑

n=1

[I(Xn;Y n) − I(Xn;Y n−1)](2)

Therefore the computation of DI requires the estimation

of joint probabilities of high dimensional random variables

over time.

According to equation (2) one can observe that, as N

increases, the estimation of high order densities becomes

complicated. Therefore, in practice, the directed information

measures are applied to every two samples of X and Y . The

expression for every two samples at the kth time sample can

be written as [9]:

DIk(XkXk+1 → YkYk+1) =H(Xk) − H(XkYk)

+H(XkXk+1Yk) + H(YkYk+1)

−H(XkXk+1YkYk+1).
(3)

The estimation of the entropies in equation (3) requires

the estimation of the underlying probability distributions.

If we assume that X and Y are normally distributed, then

equation (3) can be reduced to,

DIk(XkXk+1 → YkYk+1) =
1

2
log

|Xk||XkXk+1Yk||YkYk+1|

|XkYk||XkXk+1YkYk+1|
,

(4)

where |Z1, Z2, . . . , Zn| is the determinant of the covariance

matrix of n random variables Z1, Z2, . . . , Zn. In this way,

we can obtain the DI between two successive time points

over the whole time series.

III. SIGNIFICANCE TESTING

In order to test the significance of the directed information

between two time series, we first normalize the DI coeffi-

cient [10].

From the definition of DI, we can observe that 0 <

DI(XN → Y N ) < I(XN ;Y N ) < ∞. Therefore, we use

the following normalized version of DI, which maps DI to

the [0, 1] range [10]:

ρDI =

√

1 − e−2
∑

N

i=1
I(Xi;Yi|Y i−1). (5)

Once the normalized DI is obtained, its significance can be

determined using Fourier bootstrapping technique. For this

purpose, we generated 100 independent pairs of surrogate

time series, as proposed by Theiler [11]. In this method,

the surrogate data are constructed to have the same Fourier

spectra as the raw data. First, each data set is independently

transformed by a Fourier transform, then the phase is ran-

domized by multiplying each complex amplitude with eiϕ,

where ϕ is independently chosen for each frequency from the

interval [0, 2π] with ϕ(f) = −ϕ(−f). Finally, the inverse

Fourier transform is used to get the surrogate data. After

obtaining the surrogate data, we compute the DI for each pair

of data and determine a thresholds such that the probability

of obtaining a particular DI value by chance is less than 0.1.

IV. RESULTS

In this section, we test the effectiveness of directed infor-

mation on real EEG data.

A. EEG Data

We examined the electrophysiological activity in 10
schizophrenia patients and 10 non-psychiatric control sub-

jects who performed a continuous performance task (CPT).

The directed information measure was computed over a

window corresponding to the P300 response, 200 − 600
ms after the stimulus, over all trials (94 trials) between 27
electrode pairs in the gamma frequency band (30 − 55Hz).

The sampling frequency is 500Hz. In order to extract the

signals in the gamma band, a second order Butterworth

bandpass filter is applied and a window with 200 time

samples, corresponding to the P300 range, is extracted.

B. Distribution of EEG data

The computation of DI in equation (4) is based on the

assumption that the distribution of the signal is Gaussian. The

real EEG data following a Gaussian distribution is rejected

at significance level of 0.05 using Chi-square goodness-of-fit

test. For each subject, we analyzed data at 27 electrodes over

200 time samples. At each time point, we tested whether the

data from a particular electrode follows a normal distribution.

The chi-square test shows that for more than 90% of the

time points in the P300 window the hypothesis that the EEG

amplitude follows a normal distribution cannot be rejected at

the 5% significance level for all electrodes. Therefore, using

equation (4) for estimating DI is a reasonable approximation.

C. Significant DI matrix

In order to reflect the information flow for control and

schizophrenic subjects, we obtain the mean value of DI

between all electrode pairs over the whole P300 window and

a 27×27 normalized DI matrix is computed for each subject.

Moreover, we obtain a 27×27 threshold matrix by generating

100 surrogate data sets using Fourier bootstrapping technique
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to verify the significance of DI value for each subject and for

each electrode pair. The threshold is determined such that the

probability of obtaining a particular DI value by chance is

less than 0.1. A new matrix consisting only of the significant

DI values is constructed as:

DIsig(i, j) =

{

DI(i, j) if DI(i, j) > TH(i, j)
0 if DI(i, j) ≤ TH(i, j)

(6)

where DI(i, j) and TH(i, j) are the DI value and the cor-

responding threshold at 90% significance level for electrode

pair i and j, respectively. We then compute the average sig-

nificant DI matrix for 10 subjects in each group. The results

are shown in Fig. 1 and 2. The control group has slightly

more significant electrode pairs than the schizophrenic group.

For the control group, the average number of significant pairs

is 555, whereas for the schizophrenic group it is 504 out of

a total of 729 (27 × 27) electrode pairs.

significant DI matrix of control subjects
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Fig. 1. Mean of the significant DI matrix for all control subjects

significant DI matrix of schizophrenic subjects
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Fig. 2. Mean of the significant DI matrix for all schizophrenic subjects

Here, we compute the difference of DI value in two

directions for each electrode pair i and j to determine the

causality of the relationships. The directionally significant

DI matrix (DDI) can be computed as:

DDI = DIsig − DIT
sig, (7)

where the DIT
sig is the transpose of the significant DI matrix.

If the DI value from electrode i to j is the same with the

DI value from j to i, then the entry of DDI matrix should

be 0; if it is different, then it should be a non-zero value,

indicating the causal relationship between the two electrodes.

The average DDI matrices for control and schizophrenic

groups are shown in Fig. 3 and 4. From these figures, it

is observed that the information flow patterns in the brain

are more symmetric for the control group compared to the

schizophrenic group.

Directional difference of DI matrix for control subjects
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Fig. 3. Mean of the DDI matrix for all control subjects

Directional difference of DI matrix for schizophrenic subjects
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Fig. 4. Mean of the DDI matrix for all schizophrenic subjects

D. Comparison between the subject groups

For better comparison between the two subject groups,

t-statistics is used to quantify the statistical power of the dif-

ference in information flow for each electrode pair between

the control and schizophrenia subjects as seen in Fig. 5. The
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t-statistics can be computed as:

T =
X1 − X2√
SD1 + SD2

, (8)

where X1 and X2 are the average DI value for control and

schizophrenia groups, respectively. SD1 and SD2 are the

standard deviations for each group. The t-statistics for each

electrode pair is shown in in Fig. 5. A positive value means

that the control subjects have stronger information flow for

a specific electrode pair than the schizophrenic subjects and

the negative DI value denotes weaker information flow. Al-

though the two groups have almost equal DI values for most

electrode pairs, there still exists a number of significant dif-

ferences in terms of information flow. Electrode pairs which

have highest discrimination power are shown in Table I. As

it can be seen the control group has stronger information

flow from frontal to central (F8→C4) and parietal lobes

(F8→CP4), whereas most of the significant information flow

for the schizophrenic subjects occurs between electrodes that

are close to each other. This is in alignment with previous

research that states that effective connectivity within frontal-

parietal neurocognitive networks is disrupted in schizophre-

nia [1].

Discrimination power of DI between the two subject groups
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Fig. 5. The discrimination power between control and schizophrenic
subjects

V. CONCLUSIONS AND FUTURE WORK

In this paper, we applied directed information measure to

quantify the causality and dynamics of the interaction across

the brain. The DI measure is implemented on EEG data

collected from a group of control and schizophrenic subjects

and is shown to discriminate between the two subject groups

in terms of the information flow patterns.

Future work will include using non-parametric estimation

techniques to compute the DI measure and extending the

TABLE I

ELECTRODE PAIRS WITH HIGH DISCRIMINATION POWER

Control Schizophrenia

FZ→FP1 FT7→F7

F8→FZ FT8→F8

F8→C4 CZ→PZ

F8→CP4 T7→T8

P8→O2

P8→P4

FT8→CP4

FT8→C4

current work to quantify the information flow patterns for

multiple time samples at a time, i.e. N > 2. Moreover, the

proposed measure can be extended to discriminate between

direct and indirect interactions using a network inference

framework.
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