
 

 

 

  

Abstract— Stroke is the leading cause of disability in the 

United States.  It is estimated that 700,000 people in the United 

States will experience a stroke each year and that there are 

over 5 million Americans living with a stroke. In this paper we 

describe a novel methodology for automatic recognition of 

postures and activities in patients with stroke that may be used 

to provide behavioral enhancing feedback to patients with 

stroke as part of a rehabilitation program and potentially 

enhance rehabilitation outcomes. The recognition methodology 

is based on Support Vector classification of the sensor data 

provided by a wearable shoe-based device. The proposed 

methodology was validated in a case study involving an 

individual with a chronic stroke with impaired motor function 

of the affected lower extremity and impaired walking ability. 

The results suggest that recognition of postures and activities 

may be performed with very high accuracy. 

I. INTRODUCTION 

TROKE is the leading cause of disability in the United 

States [1].  It is estimated that 700,000 people in the 

United States will experience a stroke each year and that 

there are over 5 million Americans living with a stroke [2]. 

Approximately one third of these individuals will be left 

with functional limitations as a result of their stroke [3]. 

Initially after stroke two thirds of individuals cannot walk or 

require assistance to walk.  After three months one third of 

individuals who experience a stroke still require some form 

of assistance to walk or are not able to walk [3].  Many of 

those who do regain walking ability do no have sufficient 

locomotor capacity for independent mobility in the 

community. 

Regaining the ability to walk is an important goal for 

individuals who have experienced a stroke and it is often a 

primary focus of the rehabilitation of these individuals.  

Individuals post-stroke who are independent walkers require 

less care and their level of disability is reduced as they are 

better able to participate in their societal roles.  As walking 

ability is a primary goal of clients and focus of rehabilitation 

it is important that effective interventions are developed to 

improve walking ability in this population. 

Current research suggests that rehabilitation strategies that 
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are based on task oriented, intensive training are necessary 

to induce use dependent neurologic reorganization in order 

to enhance motor and functional recovery after stroke.  Dean 

and colleagues [4] found that individuals with chronic stroke 

who participated in a task related lower extremity training 

program delivered in a circuit training class for 1 hour/day, 3 

days a week for 4 weeks had a significantly greater 

improvement in locomotor capacity, as measured by gait 

speed and a 6 minute walk test, compared to a control group 

that received upper extremity training.  The circuit training 

consisted of 10 lower extremity task oriented strength 

training and walking activities. The improvements in 

ambulation were maintained at a 2-month follow up.  Yang 

and colleagues [5] had similar results using a 6 station task 

oriented lower extremity intervention delivered for ½ 

hour/day, 3 days a week for 4 weeks.  These task oriented 

interventions were designed to increase the strength of the 

affected lower extremity in a functionally relevant way and 

to provide repetitive walking practice under various 

conditions. 

Constraint induced movement therapy (CIMT) is another 

rehabilitation strategy that is effective for improving upper 

extremity motor function, activity and social participation in 

people with stroke. The CIMT intervention is based on three 

main elements: repetitive, task oriented training; adherence 

enhancing behavioral strategies; and restraining use of the 

less affected upper extremity [6].  Restraining the unaffected 

lower extremity is not practical for safety and functional 

reasons. The unaffected lower extremity is necessary for 

bipedal locomotion.  Additionally, there is some indication 

that restraining the unaffected upper extremity makes only a 

small contribution in the overall outcome of CIMT [6,7].  

Incorporating adherence enhancing behavioral strategies 

with task oriented, repetitive gait interventions is feasible, 

however it has not been reported in the literature.  

We have developed a novel, shoe-based sensor that can be 

used as part of a comprehensive CIMT based intervention 

for the lower extremity in conjunction with task oriented 

interventions.  The shoe based sensor will be able to monitor 

lower extremity activity, different postures and mobility 

tasks of an individual in their home and community.  The 

information generated by the shoe sensor can provide 

feedback to the patient and therapist on real world mobility 

and affected lower extremity activity. Such information can 

also be incorporated into the CIMT program as part of the 

adherence enhancing behavioral strategies.  The shoe based 

sensor has the added benefit in that the information it can 

gather in the patient’s home and community (lower 

extremity activity, postural allocations, and walking activity) 

can be used as an outcome measure to assess the 
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effectiveness of rehabilitation interventions. 

The purpose of this paper is to report on the first steps in 

the development of this novel, shoe based sensor and its 

ability to monitor postural allocations and walking activity 

in a person with a chronic stroke. 

 

II. METHODS 

A. Wearable Sensors 

The sensor data for this study were collected by a 

wearable sensor system embedded into shoes (Fig. 1). Each 

shoe incorporates five force-sensitive sensors embedded in a 

flexible insole and positioned under the critical points of 

contact: heel, metatarsal bones and the toe. Such positioning 

allows for differentiation of the most critical parts of the gait 

cycle such as heel strike, stance phase and toe-off. The 

information from the pressure sensors is supplemented by 

the data from a 3-dimensional accelerometer positioned on 

the back of the shoe. The goal of accelerometer is to detect 

orientation of the shoe in respect to gravity, to characterize 

the motion trajectory and to help characterize a specific 

posture or activity (for example, ambulation velocity). 

Pressure and acceleration data were sampled at 25Hz and 

sent over a wireless link to the base computer. The wireless 

system used for data acquisition was based on Wireless 

Intelligent Sensor and Actuator Network (WISAN)  [8] 

developed specifically for time-synchronous monitoring 

applications. Application of WISAN allowed for data 

sampling at exactly the same time from both shoes, thus 

avoiding potential complications that could be created in 

systems with varying time delay between sensors. 

The battery, power switch and the WISAN board were 

installed at the back of the shoe as shown on Fig. 1(b). The 

sensor system is very lightweight and creates no interference 

with motion patterns in stroke patients. Collected sensor data 

were visualized and processed by using Matlab software.  

 

B. Human Data Collection 

Data collection was performed on a 66-year-old male 

subject who sustained a right cerebrovascular accident 18 

months prior to data collection.  The subject presented with 

left hemiparesis with resulting motor impairment of the left 

lower extremity (Fugl Meyer lower extremity motor score: 

22/34).  He used a cane and custom fit, articulated Ankle 

Foot Orthotic (AFO) to ambulate in the community, but only 

used the AFO in his home.  His self-selected gait speed was 

0.54 m/s. The study was approved by the Institutional 

Review Board at Clarkson University and informed consent 

was obtained from the subject. 

The subject was asked to perform the following: 

1. Sit (Fig. 2) 

a. Sit in an arbitrary comfortable posture 

b. Sit with both legs on the ground 

c. Sit with crossed legs 

d. Sit while reaching forward 

e. Sit with one foot on a knee 

2. Stand (Fig. 3(a)) 

a. Stand comfortably 

b. Stand while reaching forward 

c. Stand while reaching to the left 

d. Stand while reaching to the right 

3. Walk (Fig. 3(b)) 

a. Walk at a self-selected comfortable pace 

b. Walk as fast as possible 

4. Descend a flight of stairs 

5. Ascend a flight of stairs 

 
Fig. 1. Overall view of the shoe device (a); The back side view of a 
shoe including the accelerometer, battery and power switch (b); 

Pressure-sensitive insole (c). 

 

 

    (a)              (b) 

 

    (c) 

    
          (a)               (b)       (c) 
 

Fig. 2. Examples of collected sitting postures: a) both legs on the 

ground b) crossed legs c) reaching forward. 
 

  
                (a)                 (b) 

 

Fig. 3. Examples of other postures and activities: a) stand while 
reaching to the right b) walk. 
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The data from the shoe sensors was recorded. A total of 

116 segments of 15 to 25 second duration were captured 

resulting in approximately half an hour of data equally 

distributed by listed postures and activities. 

 

C. Data Preprocessing 

Captured sensor data were processed to form feature 

vectors for the classifier. Each 800-element lagged feature 

vector represents pressure and acceleration histories from 

both shoes for the past two seconds (2 shoes x  8 sensors x 

25 samples per second x 2 seconds = 800 samples). Thus, all 

predictions are made for non-overlapping 2-second epochs. 

Fig. 4 shows a two-dimensional representation of the lagged 

feature vectors. The X-axis shows time progression and Y-

axis shows color-coded reading from the sensors in ADC 

units. First 8 sensors (top half of each image) correspond to 

the left shoe and next 8 sensors (bottom half of each image) 

correspond to the right shoe. As Fig. 4 shows, each posture 

and activity creates distinct features that can be used by the 

classifier. Each feature was normalized on the scale of [0,1]. 

 

D. The Classifier 

The lagged feature vectors were presented to a supervised 

classification algorithm for training and validation. The 

selected classifier was a variation of Support Vector 

Machine (SVM) implemented as a Matlab package 

(libSVM, [9]). The choice of the classifier was defined by 

the consideration of the generalization ability. 

The maximum margin classifier implemented by an SVM 

is less prone to overfitting compared to other available 

methods. For the target application of automatic 

classification of postures and activities the ability to 

generalize effectively is extremely important. As an 

example, motion of the lower extremities during ambulation 

is not perfectly repeatable. Similar variation in sensor data is 

expected from other postures and activities. In addition, 

some of the recorded data segments may contain transitions 

between similar postures and activities introducing the data, 

which cannot be perfectly labeled as one the classes. Thus 

the classifier is posed with a difficult task of learning a 

decision boundary, which should provide the best 

generalization from expectedly imperfect data. 

The training and validation subsets were produced by 

repeated random sub-sampling where the randomly selected 

50% of the collected dataset were used for training and the 

remaining 50% for validation (reporting of the results). Each 

posture/activity was represented in the same proportion both 

in training and validation sets. A total of 10 randomized 

experiments was used for reporting. 

Each lagged feature vector was assigned a label 

representing a distinct class {1-sitting, 2-standing, 3-

walking, 4-ascending stairs, 5-descending stairs}. The 

feature vectors and corresponding labels from the training 

set were presented to a multi-class SVM [10].  

Two different versions of the SVM classifier were used: a 

classifier with a linear (�′ � �) kernel and a classifier with a 

Gaussian (exp��	 � �� � �
�
 kernel. The expectation was 

that the linear kernel classifier may perform on the par with 

the non-linear Gaussian kernel classifier due to the high 

dimensionality of the lagged feature vectors.  

The best set of parameters for each classifier was found 

by a grid search procedure. For the linear kernel classifier 

the value of the cost parameter C was varied as �  10�, 

�  ��3, … ,4�. For the Gaussian kernel classifier the value 

of the cost parameter C was varied as �  10�, � 

��1, … ,4� and value of the kernel parameter 	 was varied as 

	  2�, �  ��7, … , �1�.  

Finally, the data from the validation set were presented to 

the trained classifier. Predicted labels were compared against 

expected and accuracy for each of the five classes computed. 

III. RESULTS 

Fig. 5 shows confusion matrices obtained by training and 

validation for the linear and non-linear classifiers. In a 

confusion matrix the rows correspond to actual classes and 

columns correspond to predicted classes.  

Two kinds of performance measures are computed to 

characterize the accuracy of classification.  Class-specific 

recall is the proportion of a class instances that were 

correctly identified. It is defined as a ratio of the respective 

diagonal value to the sum of a row. Class-specific recall is 

sometimes called class-specific accuracy. Class-specific 

precision is the proportion of the predicted class cases that 

were correct. It is defined as a ratio of the corresponding 

diagonal value to the sum of a column. Finally, the total 

 
(a)        (b)        (c)         (d)         (e) 

 
Fig. 4. Two-dimensional representation of feature vectors for each posture/activity before normalization: sitting (a), standing (b), walking (c), 

ascending stairs (d) and descending stairs (e). Each feature vector represents a 2-second time interval. The color scale is in ADC units. 
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accuracy is computed as the ratio of correctly predicted class 

cases to the total number of cases. The total accuracy was 

98.9% was the linear kernel classifier and 99.8% for the 

Gaussian kernel classifier. 

IV. DISCUSSION 

The first observation that can be drawn from the results 

presented in Fig. 5 is that the suggested approach to posture 

and activity classification seems to be feasible and 

practically implementable. All five classes have been 

recognized with substantial accuracy that would be 

acceptable for practical applications. In a typical situation 

the postures and activities do not transition from one state to 

another and back on the time scale of seconds. Thus, 

occasional misclassifications of a two second epoch can be 

filtered out by a higher level algorithm that would smooth 

changes of states. 

As expected, the linear kernel SVM came very close in 

the prediction accuracy to the Gaussian kernel classifier. The 

high dimensionality of the lagged feature vectors captures 

unique time patterns created by each posture and activity and 

thus enables linear separability of classes.  

One notable difference is classification of ascending the 

stairs in which the linear kernel classifier did not perform as 

well as the Gaussian kernel classifier. However, the class of 

ascending the stairs is the most poorly represented class in 

the data set and recognition accuracy may be heavily 

dependent on the random selection of the samples during 

partitioning into the training and validation sets. 

Both linear and Gaussian kernel SVM showed good 

generalization ability which is partially reflected by number 

of support vectors drawn from the training set. Both 

classifiers kept approximately 30%-40% of the training set 

as support vectors.  

It should also be noted that the proposed approach is 

significantly less intrusive that any other device for 

identification of postures or activities. The most well-known 

device IDEEA (www.minisun.com) used in a study by 

Zhang et. al. [11] has a sensor box with sophisticated 

electronic controls is worn on a belt with several wired 

sensors connected to the box. Each sensor has to be 

individually attached to a limb of interest by adhesive tape. 

Overall, the results of the presented experiments show that 

reliable and fully automatic recognition of postures and 

activities is feasible in individuals recovering after stroke. 

Such methodology can be employed in therapy and 

rehabilitation of recovering stroke patients.  

V. CONCLUSION 

In conclusion, the feasibility of using Support Vector 

Classification for automatic classification of postures and 

activities in people with stroke has been established by this 

study. The results suggest potential high accuracy of the 

suggested classification approach.  Further research and 

development is necessary to test the sensor in the home and 

community and to incorporate into a comprehensive CIMT 

based therapy for the lower extremity. 
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Fig. 5. Confusion matrices for the linear kernel SVM classifier (a) and for 

the Gaussian kernel SVM classifier (b) over 10 randomized experiments. 
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