
 
 

 

  

Abstract— In the present study, we propose a theoretical 
graph procedure to investigate the communication redundancy 
in brain networks. By taking into account all the possible paths 
between pairs of cortical regions, this method captures the 
network redundancy i.e. a critical resource of the brain 
enhancing the resilience to neural damages and dysfunctions. 
As an example for its potential, we apply this procedure to the 
cortical networks estimated from high-resolution EEG signals 
in a group of spinal cord injured patients during the attempt of 
the foot movement. Preliminary results suggest that in the high 
spectral contents the effects due to the spinal trauma affect the 
expected redundancy attitude by suppressing mainly the longer 
alternative pathways between the cortical regions.  

I. INTRODUCTION 
Recently, it was realized that the functional connectivity 

networks estimated from brain-imaging technologies such as 
Magnetoencephalography (MEG), functional Magnetic 
Resonance Imaging (fMRI), and Electroencephalography 
(EEG) can be investigated using graph theory [1-8].  

Since a graph is a mathematical representation of a 
network that has been essentially reduced to nodes and 
connections between them, the use of a graph-theory 
approach is potentially relevant and useful, as first 
demonstrated on a set of anatomical brain networks [9,10]. 
In those studies, the researchers employed two characteristic 
features, namely the average shortest path L and the 
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clustering index C to extract the global and local properties 
respectively of the network structure [11]. They found that 
anatomical brain networks exhibit many local connections 
(i.e., a high C) and a few random long distance connections 
(i.e., a low L), characterizing a particular model that 
interpolates between a regular lattice and a random structure. 
Such a topological property of the network (designated as 
small-world) has a strong impact in Neuroscience, since it is 
related to the optimal architecture for information processing 
and signal transmission among different cerebral structures 
[10,12]. The small-world concept in a complex network is 
strictly related to the length of the shortest paths within the 
network, which is given by the smallest number of edges 
needed to go from a starting vertex i to a target node j [13]. 
However, shortest paths just represent one possible way in 
which two nodes in the network can communicate and other 
existing pathways should be generally taken into account to 
characterize the connectivity pattern [14]. In particular, by 
neglecting the longer pathways important information is lost 
about the alternative trails that could connect any two nodes 
in a network. This information appears strictly related to the 
concepts of “redundancy” and “robustness”, critical 
resources for the survival of many biological systems as they 
provide reliable function despite the death of individual 
elements. Indeed, the presence of more than one path 
between two nodes in the graph tends to increase the 
interaction between them, while enhancing the resilience to 
damages. In particular, the human brain is supposed to 
exhibit a high level of alternative anatomical and functional 
pathways between adjacent regions and sites. This type of 
organization would allow the brain to reshape its 
physiologic mechanisms in order to compensate the critical 
consequences of possible diseases [15].  

In the present study, we considered the “superedges” 
methodology [14] in order to obtain a detailed analysis of 
brain networks considering the concept of generalized 
connectivity. This approach allows characterizing the 
networks structure and dynamics by taking into account all 
the possible paths between pairs of nodes. In order to 
illustrate the potential of such a superedges approach to 
brain network analysis, we studied a set of high-resolution 
EEG signals from spinal cord injured patients and control 
subjects during the preparation of an intended motor act. 
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II. METHODS 

A. Experimental Design 
The experimental subjects participating in the study were 
recruited by advertisement. Informed consent was obtained 
in each subject after the explanation of the study, which was 
approved by the local institutional ethics committee. The 
spinal cord injured group (SCI) consisted of five patients 
(age, 22-25 years; two females and three males). Spinal cord 
lesions were of traumatic etiology and located at the cervical 
level (C6 in three cases, C5 and C7 in two cases, 
respectively). The control group (CTRL) included five 
healthy volunteers (age, 26–32 years; five males). The 
experimental task for the SCI patients consisted in the 
performance of a brisk protrusion of their lips while they 
were attempting (volition task) the right foot movement; the 
same task was for the CTRL subjects but they had to execute 
the foot movement. The task was repeated every 8 seconds 
in a self-paced manner and 100 single trials were recorded. 
A 96-channel system (BrainAmp, Brainproducts GmbH, 
Germany) was used to record simultaneously the 64 EEG  
signals from the scalp and the EMG signals from the lips. 
Before the experiment, the structural MRI images of the 

head were taken for each experimental subject by means of a 
Siemens 1.5T Vision Magnetom MR system (Germany).  

B. Cortical Functional Connectivity 
The cortical activity estimation from the 64 scalp EEG 
signals was obtained by using realistic head models and 
Linear Inverse procedures according to techniques described 
in previous papers [16-18]. By using the passage through the 
Tailairach coordinates system, twelve Regions Of Interest 
(ROIs) were then obtained by the segmentation of the 
Brodmann areas on each accurate cortical model consisting 
of about 5.000 triangles (i.e. electrical dipoles). The ROIs 

considered in this analysis are strictly involved in the 
information processing during motor acts. Eventually, the 
electrical activity in each ROI was obtained by averaging the 
single time series of the dipoles within the segmented area. 
In order to study the preparation to an intended foot 
movement, a temporal segment of 1.5 seconds before the 
lips pursing (i.e. the event trigger) was analyzed. The 
resulting cortical waveforms were simultaneously processed 
for the estimation of functional connectivity by using the 
Directed Transfer Function (DTF) [19]. The application of 
this method to the ROIs waveforms yields a fully connected 
cortical network for each frequency band of interest: Theta 
4-7 Hz, Alpha 8-12 Hz, Beta 13-29 Hz, Gamma 30-40 Hz. 
However, only those functional connections that resulted 
statistically significant (p<0.001) after a contrast with the 
surrogate distribution of DTF values obtained from a 
Montecarlo procedure were considered in the present study. 
Fig. 1 shows the functional networks of a representative SCI 
patient in the four characteristic ranges of EEG oscillations.   

C. Superedge Approach 
The theoretical representation of a network is the graph. A 
graph consists of a set of vertices (or nodes) and a set of 
edges (or connections) indicating the presence of some sort 
of interaction between the vertices. The adjacency matrix G 
contains the information about the connectivity structure of 
the graph. When a link connects two nodes i and j, the 
corresponding entry of the adjacency matrix is aij = 1; 
otherwise aij = 0.  
Basically, the superedges methodology involves the partition 
of the network into three parts: (i) the input sub-network Gin, 
(ii) the output sub-network Gout and (iii) the superedge Gs 
that is the remainder of the network [14].  
The effect of Gin on Gout can be quantified in terms of 
structure and dynamics, given Gs, which can be understood 
as a dynamical system. In our current approach, the Gin and 
Gout are individual nodes (cortical regions). Figure 2 
presents an example of superedge approach. Note that the 
superedge framework also establishes a direct analogy with 
to the input/output representation adopted in dynamical 
systems theory. A suitable measurement to characterize the 
network structure is the number of outward paths of various 
lengths between Gin and Gout. These paths are alternative 
routes of communication between the input and output sub-
networks, and they are fundamentally associated to the brain 
function. The number of outward paths of a node i with 
length h, Routh(i,), is given by the total number of paths of 
length h between that node and all other nodes in the 
network:  
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where Rh is the number of outward paths of length h starting 
at i reaching the vertex j. When a vertex i concentrates many 
alternative paths to other common vertices this implies that 

 
Fig. 1  Cortical networks estimated from the high-resolution EEG signals 
of a representative patient during the task. The functional relationships 
were evaluated in four main frequency channels, Theta (3-6 Hz), Alpha 
(7-12 Hz), Beta (13-29 Hz) and Gamma (30-40 Hz). Networks are 
represented as graphs. Each node corresponds to a particular ROI in the 
illustrated cortex model. Each directed edge corresponds to a significant 
causal relationship between the electrical activities of two ROIs. 
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the connections between such vertices present a high level 
of resilience against edge disruption. In fact, when an edge 
belonging to any of the paths between i and j is removed, the 
connection between these vertices are not interrupted. 
Therefore, the number of outward paths indicated the vertex 
importance in terms of long range connectivity and 
redundancy. 

D. Principal Component Analysis 
When a large volume of data is available, techniques of 

dimensionality reduction are necessary. A possible way to 
overcome these limitations can be obtained by identifying 
the principal component analysis methodology, which is a 
dimensionality reduction transformation that removes data 
redundancy in an optimal fashion [20]. Let X = [x1 , x2 ,…, xh 

] T be a vector that represents a set of h measured variables. 
Let Xi , i =1, 2, …, m , be a sample vector of m observations 
of X. In our analysis, X would represent each individual and 
each measured variable, the number of outward paths or 
outward activation at distance h. Given Z = [ z1, z2, ... , zh] 
the h ×  h orthogonal matrix constructed from the 
eigenvectors of the sample covariance matrix of X, then the 
elements of zi give the contribution weight of each 
measurement for the PCA component i. The new feature 
vectors can be obtained from the original normalized feature 
vector by the following transformation [21]: 

XZU T=  . 
This transformation allows one to project the m x h 

dimensional feature into a new space with reduced 
dimensionality while yielding completely decorrelated new 
variables which correspond to linear combinations of the 
original features.  

III. RESULTS 
The superedges approach was applied to the estimated 

cortical networks by considering path lengths ranging from 
1 to 10 (h=1,2…10, where 10 is the maximum distance 
observed for such networks). Since the estimated cortical 
networks are directed, we considered the directed version of 
the algorithm described in Da Fontoura Costa and Rodrigues 

[14]. The current investigations about the structure of the 
cortical networks in spinal injured patients and healthy 
individuals consider the optimal statistical method i.e. 
Principal Component Analysis (PCA) for decorrelation of 
the heavily correlated measurements and dimensionality 
reduction. In particular, the number of measurements was 
the number of experimental subjects i.e. m=10 (five healthy 
and five spinal cord injured) and the number of variables 
was the number of considered path lengths i.e. h=10. 
Eventually, we projected the m ×  h spaces of each 
frequency band into the main three-dimensional space. The 
results from the PCA analysis are presented in Fig. 3 for all 
the frequency bands. Each scatter plot shows the projections 
of the Rout values with respect to the first three main 
principal components (i.e. PCA1, PCA2, PCA3). While the 
separation between the SCI group and the CTRL group is 
well defined in the Gamma band (mostly due to the 
combination of the PCA2 and PCA3 components), the 
separation in the other bands is not clear. This implies that 
only in the Gamma band the SCI cerebral network deviates 
from the CTRL network with respect to its structure, which 
is quantified by the number of the outward paths 
distribution. 

Figure 4 shows that the mean Rout values of both the 
populations have similar bell-shaped profiles, with a peak in 
correspondence of h=5. However, a comprehensible 
distinction is that the SCI network tends to have fewer paths 
across a narrow range of lengths h (i.e. 5≤ h≤ 7). This lower 
number of outward paths reflects a loss in terms of mid-
range connectivity and redundancy in the cortical functional 
network.  

 
Fig 2. The sub-network inside the dashed region represents the super-
edge, which acts as a dynamical system between the input vertex and the 
output vertex. 

 
Fig 3.  Scatter plot of the three main components obtained through the 
Principal Components Analysis from the outward paths Rout of length 
h=1… 10. Each subplot shows the results found in a different frequency 
band. Star symbols represent values from the SCI group; little squares 
stand for values from the CTRL group. Each value is also projected on 
the respective Cartesian planes (PCA1xPCA2, PCA1xPCA3, 
PCA2xPCA3). 
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IV. DISCUSSION 
The use of theoretical graph approaches have been widely 

demonstrated to provide important information about the 
structure and the architecture of complex brain networks 
[22]. Several works have investigated the small-world 
properties of anatomical and functional brain networks in 
pathological and physiological conditions. The small-world 
analysis relies on the estimate of two characteristic measures 
i.e. the path length and the cluster index. Both these indexes 
are computed from the shortest paths within the network. 
The organization of such optimal pathways is very useful as 
it reveals the level of information processing and signal 
transmission among different cerebral structures. However, 
the solely consideration of shortest path distances could 
provide for an incomplete characterization of networks, 
since complex connectivity systems with similar shortest 
paths distribution can indeed exhibit distinct structures and  

dynamics.  
The obtained preliminary results suggest that the effects 

due to the spinal trauma affect the expected redundancy 
attitude of the cortical functional networks by suppressing 
mainly the longer alternative connections between the ROIs 
in the Gamma (30-40 Hz) frequency band. 
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Fig 4. Profile of the number of outward paths Rout in the Gamma 
frequency band. The different lengths h are listed at the x-axis. Solid 
circles represent Rout mean values from the SCI group; Dashed squares 
stand for the Rout mean values from the CTRL group. Vertical bars 
indicate the respective standard deviation. 
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