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Abstract— In the last few years, many studies in the cognitive
and system neuroscience found that a consistent network of
brain regions, referred to as the default network, showed high
levels of activity when no explicit task was performed. Some
scientists believed that the resting state activity might reflect
some neural functions that consolidate the past, stabilize brain
ensembles and prepare us for the future. Here, we modeled
default network as undirected weighted graph and then used
graph theory to investigate the topological properties of the
default network of the two groups of people with different
intelligence levels. We found that, in both groups, the posterior
cingulate cortex showed the greatest degree in comparison to
the other brain regions in the default network, and that the
medial temporal lobes and cerebellar tonsils were topologically
separations from the other brain regions in the default network.
More importantly, we found that the strength of some functional
connectivities and the global efficiency of default network were
significantly different between the superior intelligence group
and the average intelligence group, which indicates that the
functional integration of the default network might be related
to the individual intelligent performance.

I. INTRODUCTION

Scientists and engineers have been attempting to simulate
human cognitive mechanisms to make artificial intelligent
system that exhibits mental capabilities, including percep-
tion, action and motivation. One has been concerned pri-
marily with the processes that how information is extracted
from sensory inputs in artificial system and integrated over
time to make decisions and then take actions. So, researchers
have paid much attention to the dynamics when the system
is required to make response to and interact with the external
environment. Unfortunately, it seems that the progress is not
exciting enough. An interesting question is what the artificial
system does when it is idle. In other words, is it necessary to
explore the significance of investigating the dynamics of the
artificial system when the system is not explicitly engaged
in the interaction with the external environment?

On the other hand, some scientists in cognitive and system
neuroscience found that a consistent network of human brain
regions showed high levels of activity when no explicit task
was performed. They suggested that the human brain has a
default or intrinsic mode of functioning [1], [2]. The default
network is comprised of a set of brain regions, including
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medial prefrontal cortex, posterior midbrain regions, medial
temporal lobes, lateral parietal cortex and so on. These brain
regions show greater neural activity during passive states in
comparison to a range of cognitive task states. Although there
are some argues about cognitive functions of the default
network [3], some investigators suggest that the brain’s
default network directly contribute to internal mentation that
is largely detached from the external world, including self-
reflective thoughts and judgments, conceiving the mental
states of other peoples and envisioning the future to make up
alternative decision and so on [2]. Additionally, researchers
have found that the activity of the default network was
damaged in some neuropsychiatric diseases, for example,
Alzheimer disease, schizophrenia, in the coma and even
vegetative state. Taken together, these findings suggested
that the intrinsic activity of the default network could play
important role in the human cognitive functions.

In the present study, we explored the associations between
different human intelligent performance and the activity of
the default network when the subjects were not required to
do any explicitly cognitive tasks. Using the graph theory, we
modeled the default network as weighted undirected graph
for each subject and then investigated the network topology
of the default network of the subjects.

II. MATERIALS AND METHODS

In the present study, we used the dataset that has been
described previously to carry out the present study. For more
details about the dataset and the data preprocessing, please
refer to [4].

A. Subjects and imaging protocol:

Fifty-nine healthy right-handed subjects were included in
this study. The Chinese Revised Wechsler Adult Intelligence
Scale (WAIS-RC) were administered to all subjects for
assessing individual intelligence. The subjects were divided
into two groups on basis of the individual intelligence
quotient score, i.e. the superior intelligence group (FSIQ ≥
120, 15 women and 17 men) and the average intelligence
group (120 > FSIQ > 90, 15 women and 12 men). There
was not significant difference in age between the two groups.
All subjects were recruited by advertisement, and they gave
written informed consent. This study was approved by the
ethical committee of Xuanwu Hospital of Capital Medical
University.

MR imaging was acquired using a 3.0-Tesla MR scanner.
Functional images were collected axially by using an echo-
planar imaging sequence. During the resting state scanning,
the subjects were instructed to keep still with their eyes

2212

31st Annual International Conference of the IEEE EMBS
Minneapolis, Minnesota, USA, September 2-6, 2009

978-1-4244-3296-7/09/$25.00 ©2009 IEEE



TABLE I
SEED REGIONS FOR DEFAULT NETWORK

Brain region Abbreviations MNI Coordinates
Medial prefrontal cortex (anterior) aMPFC (-3,54,18)

Left superior frontal cortex L.Sup.F (-15,54,42)
Right superior frontal cortex R.Sup.F (18,42,48)

Medial prefrontal cortex (ventral) vMPFC (-6,36,-9)
Left inferior temporal cortex L.IT (-60,-9,-24)

Right inferior temporal cortex R.IT (57,0,-27)
Left parahippocampal gyrus L.PHC (-24,-18,-27)

Right parahippocampal gyrus R.PHC (27,-18,-24)
Posterior cingulate cortex PCC (-3,-48,30)

Retrosplenial Rsp (9,-54,12)
Left lateral parietal cortex L.LatP (-48,-69,39)

Right lateral parietal cortex R.LatP (48,-66,36)
Cerebellar tonsils Cereb (-6,-54,-48)

closed, as motionless as possible and not to think about
anything deliberately.

B. Data analysis:

1) Preprocessing: Several preprocessing steps were used,
including (1) slice timing; (2) realigning; (3) spatially nor-
malizing; (4) spatially smoothing; (5) linear regression to
remove the influence of head motion, whole brain signals
and linear trends; (6) temporally band-pass filtered.

2) Region definition: We used a priori regions of interest
(ROIs) to define the default network as previous studies [5].
The coordinates of a priori ROIs were obtained as shown in
Table I. All of ROIs were defined as a spherical region with
a radius of 6mm at the center of the obtained coordinates of
a priori ROI.

3) Individual functional connectivity graph: After extract-
ing the 13 ROIs for each subject, we computed the func-
tional connectivity between each pair of the 13 ROIs. The
resulting correlation then was transformed to approximate
Gaussian distribution using Fisher’s r-to-z transformation
z = 1

2 ln 1+r
1−r . Thus, for each subject, we obtained a 13× 13

matrix, with each element representing the strength of func-
tional connectivity between the corresponding two regions
within the default network. Specifically, the diagonal element
was self-correlation of the corresponding region. So, for
computational convenience, we set all the diagonal elements
to 2, whose approximate correlation was 0.964.

In the present study, all functional connectivities within the
default network were significantly greater than 0 (P< 0.05,
FDR corrected), which was consistent with previous studies
[5]. In addition, although we found that some of functional
connectivity in some subjects were negative, the negative
functional connectivity accounted for less than 5% of the
number of all the functional connectivity. To adopt the com-
mon used network measures to investigate the topological
characteristics of the default network, we set the negative
functional connectivity to 0. These allowed us to use the
undirected weighted graph to model the default network.
That is, the node of graph was used to denote the brain
region within the default network, and the weight of the edge

between two nodes was represented as the z-valued strength
of functional connectivity between the corresponding two
brain regions. Thus, we constructed a complete undirected
weighted graph to model the topology of the default network
for each subject.

4) Median functional connectivity graph: We intuitively
investigated the average topology of the default network
within each of the two groups. For more robustness, we used
the median, rather than the mean, of z-valued strength of
each functional connectivity to represent the average strength
of the functional connectivity. Thus, we obtained a median
functional connectivity graph separately for each group and
then analyzed the network measures and topological archi-
tecture for the median functional connectivity graph of each
group.

In graph theory, the degree si of a node i was the number
of edges linking to the node, and was defined as [6]:

si =
∑

j

wij (1)

where wij denoted the weighted edge that connected node
i with node j, that is, in the present study, the z-valued
strength of the functional connectivity between brain region
i and brain region j. The degree si can be used to quantify
the extent to which the node was central in the graph.

To represent the architecture of the graph, we used
Kamada-Kawai algorithm (fix the first and last nodes) that
was implemented in the free software Pajek. The layout of
graph could be used to represent how close the nodes in
graph were.

5) Comparison of topological properties of graph between
two groups: We used two-sample t test to investigate whether
there was significant difference in some network measures
of the graph of the default network between the superior
intelligence group and the average intelligence group. These
measures included the strength of functional connectivity be-
tween any two nodes, node degree of every node, clustering
coefficient of every node, the shortest path length between
any pair of nodes and the global efficiency of graph. The
definition and significance of degree have been stated in
Equation 1.

The clustering coefficient Ci can be used to quantify how
close the neighbors of the node i are. Various definitions for
clustering coefficient in weighted graph have been proposed
over years. In the present study, since the weighted graph
was complete, we used the definition as [7]:

Ci =

∑
j

∑
k wijwjkwki

(
∑

j wij)2 −
∑

j wij
2

(2)

where wij denoted the weighted edge that connected node
i to node j.

The shortest path length refers to the length of the path
of minimal length between two nodes, and it can be used
to characterize how well two nodes communicate. In this
study, the weight of the edge between two nodes was rep-
resented to the z-valued strength of functional connectivity,
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and we set all the diagonal elements of individual functional
connectivity matrix to 2. Therefore, we defined the distance
between two nodes in the graph by subtracting the z-valued
strength of functional connectivity from the constant 2. The
more general definition of the distance in this study was as
follows.

dij = constant− wij (3)

where wij was the z-valued strength of the functional
connectivity between the brain region i to the brain region
j. Here, the constant was set to 2. Thus, the distance was
inversely related to the strength of the functional connectiv-
ity. Then, we computed the shortest path lengths with the
Dijkstra’s algorithms. With the shortest path lengths, we can
define the so-called global efficiency of graph as [8]:

E =
1

N(N − 1)

∑

i 6=j

1
lij

(4)

where N was the number of nodes in the graph, and lij
was the shortest path length between node i and node j.
Here, we used the global efficiency to quantify the asso-
ciations between intelligence differences and the functional
integration of the default network.

6) Correlations between network measures and FSIQ
scores across all subjects: We correlated the FSIQ scores
with network measures across all subjects. These measures
included the strength of the functional connectivity, node
degree, clustering coefficient, the shortest path length and
global efficiency.

III. RESULTS

The median functional connectivity matrix and weighted
graph for both groups were shown in Fig. 1. As shown in Fig.
1, the PCC showed the greatest degree and was situated in the
center of the layout of the default network in both of the two
groups. We validated that PCC was the node with the greatest
degree in the default network (the paired t test, P< 0.00025).
On the other hand, we used the paired t test and found that the
bilateral PHC and cerebellar tonsils showed greater shortest
path lengths to the major nodes of the default network in
comparison to the nodes within major nodes (bilateral PHC,
P< 0.0000, cerebellar tonsils, P< 0.0000).

Comparing the network measures of the default network
between the superior intelligence group and the average
intelligence group, we found that there were significant
differences in the strength of some functional connectivi-
ties between the two groups (two-sample t test, P< 0.05,
uncorrected). These results were shown in Table II. We
found that there were no significant differences in any node
degree and clustering coefficient between the two groups.
Additionally, we found significant differences in the shortest
path length between the two groups (two-sample t test,
P< 0.05, uncorrected). And there was significant difference
in the global efficiency of the graph of the default network
(two-sample t test, P< 0.035, uncorrected).

Fig. 1. The median functional connectivity matrix and graph separately
for the superior intelligence group (Column A, left) and the average
intelligence group (Column B, right). The first row represents the function
connectivity between any pair of brain regions in the default network in a
pseudoanatomical organization. The gray value of line is proportional to the
connection strength. The second row represents the correlation matrices. The
third row represents one layout of graph of the default network using the
Kamada-Kawai algorithm. The distance between nodes roughly represents
how close the brain regions functionally correlated. Node size is proportional
to its node degree.

We correlated the network measures with the FSIQ scores
across all subjects. We found that there were no signif-
icant correlation between the FSIQ scores and some net-
work measures, including node degree, clustering coefficient
and global efficiency (P= 0.072), while some functional
connectivities showed significant correlations to the FSIQ
scores, including PCC-vMPFC, Rsp-vMPFC, Rsp-L.PHC,
Rsp-R.PHC and R.IT-L.PHC (P< 0.05, uncorrected).

IV. DISCUSSION

In the present study, using weighted graph theory, we
quantitatively confirm that PCC was the most important
hub node in the default network, which suggested that
PCC could be the center of information processing within
the default network. At the same time, we found that
the MTLs were topologically separations from the other
brain regions within the default network. Additionally, we
found that there were significant differences in the global
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TABLE II
THE COMPARISONS OF THE STRENGTH OF FUNCTIONAL CONNECTIVITY

BETWEEN THE SUPERIOR INTELLIGENCE GROUP AND THE AVERAGE

INTELLIGENCE GROUP

Functional connectivity P value
Brain region 1 Brain region 2

L.Sup.F R.Sup.F 0.038
L.Sup.F L.PHC 0.031
L.Sup.F Rsp 0.0256
R.Sup.F vMPFC 0.0257
vMPFC PCC 0.0453
vMPFC Rsp 0.0229

L.IT PCC 0.0467
L.IT L.LatP 0.0314
R.IT L.PHC 0.0014

L.PHC PCC 0.0041
L.PHC Rsp 0.001
R.PHC Rsp 0.0385

efficiency between the average intelligence group and the
superior intelligence group. As shown in methods, the global
efficiency is inversely related to the shortest path length,
which roughly means the global efficiency is related to the
strength of functional connectivity in the present study. In
comparison to the functional connectivity, the measure of the
global efficiency is numerically easier to use to estimate the
functional integration of multiple brain regions in a network.
In this study, the superior intelligence group showed larger
global efficiency of the default network compared to the
average intelligence group, which suggest that the subjects
with higher intelligence have more integrated functional
architecture of the default network.

For a long time, researchers have been concerned with
some explicitly intelligence demanding tasks, for example,
rational planning, reasoning and working memory, in order
to understand the neural basis of the intelligence[9]. In com-
parison, there are a few studies to investigate the associations
between the intrinsic activity and the intelligent performance
[10]. However, human brains are not only adaptive but also
anticipatory and prospective [11]. Interestingly, we noted that
some artificial cognitive architecture, for example, ACT-R
(Adaptive Control of Thought–Rational) [12], had designed
some modules or mechanisms to rehearse imaginary events
or scenarios and then use the information from the rehearsal
to modulate the actual behavior. The architectures suggest the
importance of the ability to reflect on the past and predict
the future, which are similar to the cognitive functions of the
default network in human brain. So, we here suggest that the
ongoing studies on the intrinsic activity of human brain will
bring more cues not only for human cognitive functions but
also for the developmental artificial cognitive system.
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