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Abstract— It has frequently been reported in the medical
literature that the EEG of Alzheimer disease (AD) patients
is less synchronous than in healthy subjects. In this paper, it
is explored whether loss in EEG synchrony can be used to
diagnose AD at an early stage. Multiple synchrony measures are
applied to two different EEG data sets: (1) EEG of pre-dementia
patients and control subjects; (2) EEG of mild AD patients
and control subjects; the two data sets are from different
patients, different hospitals, and obtained through different
recording systems. It is observed that both Granger causality
and stochastic event synchrony indicate statistically significant
loss of EEG synchrony, for the two data sets; those two
synchrony measures are then combined as features in linear and
quadratic discriminant analysis (with crossvalidation), yielding
classification rates of 83% and 88% for the pre-dementia data
set and mild AD data set respectively. These results suggest
that loss in EEG synchrony is indicative for early AD.

I. INTRODUCTION

Alzheimer’s disease (AD) is a neuro-degenerative disease,

the most common form of dementia, third most expensive

disease and sixth leading cause of death in the United States.

It affects more than 10% of Americans over age 65, nearly

50% of people older than 85, and it is estimated that the

prevalence of the disease will triple within the next 50

years [1].

While no known cure exists for Alzheimer’s disease, a

number of medications are believed to delay the symptoms

(and perhaps causes) of the disease. The progression of the

disease can be categorized in four different stages. The first

stage is known as Mild Cognitive Impairment (MCI), and

corresponds to a variety of symptoms — most commonly

amnesia — which do not significantly alter daily life. Be-

tween 6 and 25% of people affected with MCI progress to

AD every year. The next stages of Alzheimer’s disease (Mild

and Moderate AD) are characterized by increasing cognitive

deficits, and decreasing independence, culminating in the

patient’s complete dependence on caregivers and a complete

deterioration of personality (Severe AD) [2].

Early diagnosis of Alzheimer’s disease, and in particular

diagnosis of MCI and Mild AD, is important for several

reasons [3]:

• A positive diagnostic gives the patient and his family

time to inform themselves about the disease, to make
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life and financial decisions related to the disease, and

to plan for the future needs and care of the patients.

• Current symptoms-delaying medications have a given

time frame during which they are effective. Early

diagnosis of MCI helps ensure prescription of these

medications when they are most useful.

Medical diagnosis of Alzheimer’s disease is hard, and

symptoms are often dismissed as normal consequences of

aging. Diagnosis is usually performed through a combination

of extensive testing and eliminations of other possible causes.

Psychological tests such as Mini Mental State Examina-

tions (MMSE), blood tests, neurological examination, and

increasingly, imaging techniques are used to help diagnose

the disease [4].

Our approach is based on medical studies which show

that many neurophysiological diseases (such as Alzheimer’s

disease) are often associated with abnormalities in neural

synchrony: in particular, it has frequently been reported that

AD cause brain signals from different brain region [5] to

become less correlated. Therefore, developing methods to

reliably detect degradations in brain-signal coherence may

help to diagnose AD.

In this paper we solely focus on electroencephalograms

(EEGs), which are measurements of electrical activity pro-

duced by the brain as recorded from electrodes placed on

the scalp [6]. EEG recording systems are inexpensive and

mobile, in constrast to other brain imaging systems such

as MRI. Therefore, EEG analysis may potentially be used

as a tool to screen a large number of people for risk of

Alzheimer’s disease.

Several research groups have tried to diagnose early-stage

AD by detecting perturbations in the synchrony of EEG

signals (“EEG synchrony”) (see [7] for numerous refer-

ences). However, in most existing studies, a single synchrony

measure is applied to a single EEG data set. Since almost

every study considers a different synchrony measure and a

different EEG data set, it is hard to compare existing studies,

and to assess whether loss of EEG synchrony is truly relevant

for diagnosing AD.

In this paper, we apply a variety of synchrony measures to

EEG data of MCI patients and mild AD (MiAD) patients. We

determine which synchrony measures consistently indicate

a statistically significant loss in EEG synchrony in those

two groups of patients. In addition, we combine the most

discriminative synchrony measures to separate MCI/MiAD

patients from healthy subjects, through linear and quadratic

discriminant analysis. This is probably one of the first studies

that assesses multiple synchrony measures on multiple EEG
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data sets of early-AD patients (MCI and MiAD), both in

terms of statistical significance and discriminative power

(determined through crossvalidation).

In an earlier study we applied multiple synchrony mea-

sures to one data set (MCI patients), to study the statistical

significance of EEG synchrony loss due to MCI [7]. In this

paper, we will show that the (positive) results of [7] can be

reproduced on EEG data of mild AD patients, recorded from

different patients in a different hospital using a different EEG

system; more precisely, two synchrony measures (Granger

causality and stochastic event synchrony) indicate a statis-

tically significant loss in EEG synchrony in MCI patients

as well as MiAD patients. Those consistent and promising

results suggest that loss in EEG synchrony may potentially

be used as an indicator for the onset of AD.

This paper is structured as follows. In Section II we review

the synchrony measures used in this paper. In Section III

we describe our two EEG data sets (MCI and MiAD). In

Section IV we describe our analysis and results, and at the

end of the paper we offer some conclusions.

II. SYNCHRONY MEASURES

We briefly review the various families of synchrony mea-

sures investigated in this paper: correlation coefficient, coher-

ence, Granger causality, phase synchrony, state space based

synchrony, and stochastic event synchrony; we describe those

measures in much more detail in [7].

A. Correlation Coefficient

The correlation coefficient r is perhaps one of the most

well-known measures for linear interdependence between

two signals x and y. If x and y are not linearly correlated,

r is close to zero; on the other hand, if both signals are

identical, then r = 1 [6].

B. Coherence

The coherence function quantifies linear correlations in

frequency domain. One distinguishes the magnitude square

coherence function c(f) and the phase coherence function

φ(f) [6].

C. Granger Causality

Granger causality1 refers to a family of synchrony mea-

sures that are derived from linear stochastic models of

time series; as the above linear interdependence measures,

they quantify to which extent different signals are linearly

interdependent. Non-linear extensions of Granger causality

exist, but we do not consider them here since they are

less common. Whereas the above linear interdependence

measures are bivariate, i.e., they can only be applied to pairs

of signals, Granger causality measures are multivariate, they

can be applied to multiple signals simultaneously.

Suppose that we are given n signals

X1(k), X2(k), . . . , Xn(k), each stemming from a different

channel. Those signals are modeled as a multivariate

1Granger causality measures are implemented in the BioSig library:
http://biosig.sourceforge.net/.

autoregressive (MVAR) model, which is a linear model that

captures the statistical dependencies among the n signals.

The Granger causality measures are defined in terms of

coefficients of the MVAR model, both in time and frequency

domain. Two symmetric Granger measures are:

• MVAR coherence |Kij(f)| ∈ [0, 1] describes the

amount of in-phase components in signals i and j at

the frequency f .

• Partial coherence (PC) |Cij(f)| ∈ [0, 1] describes the

amount of in-phase components in signals i and j at the

frequency f when the influence (i.e., linear dependence)

of the other signals is statistically removed.

The following asymmetric (“directed”) Granger causality

measures capture causal relations:

• Directed transfer function (DTF) γ2
ij(f) quantifies the

fraction of inflow to channel i stemming from channel

j.

• Full frequency directed transfer function (ffDTF)

F 2
ij(f)

△

=
|Hij(f)|2

∑

f

∑m

j=1 |Hij(f)|2
∈ [0, 1], (1)

is a variation of γ2
ij(f) with a global normalization in

frequency.

• Partial directed coherence (PDC) |Pij(f)| ∈ [0, 1]
represents the fraction of outflow from channel j to

channel i.

• Direct directed transfer function (dDTF) χ2
ij(f)

△

=
F 2

ij(f)C2
ij(f) is non-zero if the connection between

channel i and j is causal (non-zero F 2
ij(f)) and direct

(non-zero C2
ij(f)).

D. Phase Synchrony

Phase synchrony refers to the interdependence between

the instantaneous phases φx and φy of two signals x and y;

the instantaneous phases may be strongly synchronized even

when the amplitudes of x and y are statistically independent.

The instantaneous phase φx of a signal x may be extracted

as [9]:

φx(k)
△

= arg [x(k) + ix̃(k)] , (2)

where x̃ is the Hilbert transform of x. The phase synchrony

index γ for two instantaneous phases φx and φy is defined

as [9]:

γ =
∣

∣

〈

ei(nφx−mφy)
〉∣

∣ ∈ [0, 1], (3)

where n and m are integers (usually n = 1 = m).

E. State Space Based Synchrony

State space based synchrony (or “generalized synchroniza-

tion”) evaluates synchrony by analyzing the interdependence

between the signals in a state space reconstructed domain.

The central hypothesis behind this approach is that the

signals at hand are generated by some (unknown) non-

linear dynamical system. We consider three state space based

synchrony measures: Sk, Hk, and Nk [10]2.

2Matlab code of Sk , Hk , and Nk is available from
http://www.vis.caltech.edu/˜rodri/software.htm
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F. Stochastic Event Synchrony (SES)

Stochastic event synchrony (SES), a family of interdepen-

dence measures that we developed in earlier work [11], [12],

[13], describes the similarity between point processes. Here

we apply SES to point processes extracted from the time-

frequency transforms of the EEG signals; more specifically,

we apply the pairwise SES measures. As a first step, the time-

frequency transform of each EEG signal is approximated

as a sum of (half-ellipsoid) basis functions, referred to as

“bumps” (see [14])3. The resulting bump models, represent-

ing the most prominent oscillatory activity, are then aligned4:

bumps in one time-frequency map may not be present in

the other map (“non-coincident bumps”); other bumps are

present in both maps (“coincident bumps”), but appear at

slightly different positions on the maps.

Stochastic event synchrony (SES) consists of five param-

eters that quantify the alignment of two bump models:

• ρ: fraction of non-coincident bumps,

• δt and δf : average time and frequency offset respec-

tively between coincident bumps,

• st and sf : variance of the time and frequency offset

respectively between coincident bumps.

The parameters ρ and st are the most relevant for the

present study, since they quantify the synchrony between

bump models (and hence, the original time-frequency maps);

low ρ and st implies that the two time-frequency maps at

hand are well synchronized. For more details on SES, we

refer to [11], [12], [13].

III. EEG DATA SETS

A. Data Set 1: MCI and Control

The first EEG data set comprises two study groups. The

first consists of 25 patients who had complained of memory

problems. These subjects were diagnosed as suffering from

mild cognitive impairment (MCI) and subsequently devel-

oped mild AD (MiAD). The EEG recordings were conducted

while all patients were in the MCI stage. The criteria for

inclusion into the MCI group were a mini mental state exam

(MMSE) score = 24, though the average score in the MCI

group was 26 (SD of 1.8). The other group is a control set

consisting of 56 age-matched, healthy subjects who had no

memory or other cognitive impairments. The average MMSE

of this control group is 28.5 (SD of 1.6). The ages of the

two groups are 71.9 ± 10.2 and 71.7 ± 8.3, respectively.

We provide some more details in the recording setup.

Ag/AgCl electrodes (disks of diameter 8mm) were placed

on 21 sites according to 1020 international system, with

the reference electrode on the right ear-lobe. EEG was

recorded with Biotop 6R12 (NEC San-ei, Tokyo, Japan) at

a sampling rate of 200Hz, with analog bandpass filtering in

the frequency range 0.5-250Hz and online digital bandpass

filtering between 4 and 30Hz, using a third-order Butterworth

3Software for bump modeling is available from
http://www.bsp.brain.riken.jp/˜fvialatte/bumptoolbox/toolbox home.html.

4Matlab code of the SES measures can be downloaded from
http://www.dauwels.com/SESToolbox/SES.html.

filter (forward and reverse filtering). We used a common

reference for the data analysis (right ear-lobe), and did not

consider other reference schemes (e.g., average or bipolar

references).

B. Data Set 2: Mild AD and Control

The second EEG data set consists of 24 healthy control

subjects (age: 69.4± 11.5 years old; 10 males) and 17

patients with mild AD (age: 77.6 ± 10.0 years old; 9

males) [15]. The patient group underwent full battery of

cognitive tests (Mini Mental State Ex- amination, Rey Au-

ditory Verbal Learning Test, Benton Visual Retention Test,

and memory recall tests). The EEG time series were recorded

using 19 electrodes positioned according to Maudsley sys-

tem, similar to the 10-20 international system, at a sampling

frequency of 128 Hz. EEGs were band-pass filtered with

digital third-order Butterworth filter (forward and reverse

filtering) between 4 and 30 Hz.

C. Recording Conditions Common to Both Data Sets

In both data sets, all recording sessions were conducted

with the subjects in an awake but resting state with eyes

closed, and the length of the EEG recording was about 5

minutes, for each subject. Only those subjects were retained

in the analysis whose EEG recordings contained at least 20s

of artifact-free data. Based on this requirement, the number

of subjects of EEG Data Set 1 was further reduced to 22 MCI

patients and 38 control subjects; in EEG Data Set 2 no such

reduction was required. From each subject in the two data

sets, one artifact-free EEG segment of 20s was analyzed.

IV. RESULTS

We investigate whether there are statistically significant

differences in average EEG synchrony between early-AD

patients (MCI and MiAD) and control subjects (see [7]

for technical details on the computation of average EEG

synchrony). To this end, we apply the Mann-Whitney test to

the average EEG synchrony values of MCI/MiAD patients

and control subjects. In particular, we conduct a Mann-

Whitney test for each individual synchrony measure, each

approach to compute the synchrony measures (see [7]), and

each parameter setting, e.g., different EEG segment length

L; we follow the same approach as in [7]. The results are

displayed in Table I.

Since we consider many different synchrony measures,

various approaches to compute those measures (see [7]),

and many different parameter settings simultaneously, the

p-values need to be appropriately corrected. We correct the

p-values in two steps (see [7]): first we treat each synchrony

measure separately, and correct for the multiple parameter

settings and computational approaches; we retain the smallest

p-value for each synchrony measure. Then we correct the

resulting p-values for the multiple measures. As a result, we

obtain one (corrected) p-value for each synchrony measure

and for each data set. The p-values that remain significant

after post-correction are marked in Table I: interestingly, both

Granger causality (full frequency DTF) and stochastic event

2226



Measure MCI vs. Control MiAD vs. Control

Correlation 0.025∗ 0.78

Coherence 0.029∗ 0.0085∗†

Phase Coherence 0.051 0.42

MVAR coherence 0.15 0.20

Partial Coherence 0.16 0.50

PDC 0.60 0.0085∗

DTF 0.34 0.0019∗∗†

ffDTF 0.0012∗∗† 0.0001∗∗†

dDTF 0.030∗ 0.013∗

Nk 0.029∗ 0.40

Sk 0.045∗ 0.0013∗∗†

Hk 0.052 0.16

Hilbert Phase 0.96 0.53

st 0.051 0.0040∗∗

ρ 0.00044∗∗† 0.0024∗∗†

TABLE I

SENSITIVITY OF AVERAGE EEG SYNCHRONY FOR PREDICTION OF MCI

(DATA SET 1): UNCORRECTED P-VALUES FOR MANN-WHITNEY TEST; *

AND ** INDICATE p < 0.05 AND p < 0.005 RESPECTIVELY; † INDICATES

P-VALUES THAT REMAIN SIGNIFICANT AFTER POST-CORRECTION.

synchrony (ρ) yield significant differences in both data sets.

The significance level is chosen sufficiently low so that the

expected number of false positives is smaller than one. In the

mild AD data set, some additional synchrony measures yield

statistically significant results; this is not surprising since

mild AD is a more advanced stage of AD than pre-dementia.

In addition to the tests of statistical significance, we

investigate whether loss of EEG synchrony allows us to sepa-

rate MCI/MiAD patients from age-matched control subjects.

Using full frequency DTF and ρ, we conduct linear and

quadratic discriminant analysis with leave-one-out crossvali-

dation; the results are summarized in Table II. Interestingly,

ρ is most discriminative for MCI and much less for Mild

AD, whereas full frequency DTF is strongly discriminative

for Mild AD, but less for MCI. The best classification results

are obtained for the Mild AD data set, as expected. Other

pairs of features lead to better classification results on the

MiAD data set, but perform substantially worse on the MCI

data set.

V. CONCLUSIONS

This study demonstrates the discriminative power of EEG

synchrony loss to diagnose AD at an early stage. We verified

that the results we obtained earlier for MCI patients [7] carry

over to miAD patients; more precisely, the two synchrony

measures that yielded statistically significant results (after

postcorrection, see [7]) for EEG data of MCI patients, i.e.,

ffDTF and ρ, also yield significant results for EEG data of

MiAD patients. In the future, we will analyze additional data

sets to verify our results. In addition, it seems to be promising

MCI vs. Control Linear DA Quadratic DA

ffDTF 70.0% 70.0%

ρ 68.3% 75%

ffDTF and ρ 83.3% 83.3%

MiAD vs. Control Linear DA Quadratic DA

ffDTF 82.9% 75.6%

ρ 62.5% 57.5%

ffDTF and ρ 85.0% 87.5%

TABLE II

CLASSIFICATION RATES FOR DISCRIMINANT ANALYSIS (DA) OF

FULL-FREQUENCY DTF AND ρ, DETERMINED THROUGH

LEAVE-ONE-OUT CROSSVALIDATION.

to combine synchrony measures with other EEG features,

e.g., spectral features.
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