
  

  

Abstract—This paper presents a new method for nonlinear 
trend estimation of non-stationary signals, by which the trend 
can be self-adaptively decomposed through calculating the 
midpoint-based local means. In this method, the so-called 
midpoints are proposed to construct the local mean of a signal 
instead of two envelopes in the classical empirical mode 
decomposition (EMD) algorithm, thus resulting in the midpoint- 
based empirical decomposition. Furthermore, a negentropy- 
based statistical method is presented to justify decomposition of 
the trend. Simulation results indicate that the new algorithm 
improves the performance of signal decomposition and trend 
estimation in comparison with the classical EMD algorithm. 
The proposed method also shows the value in self-adaptively 
estimating the nonlinear respiratory component from non- 
invasively measured ventilation signals. 

I. INTRODUCTION 
REND estimation is significant for analyzing, estimating 
and predicting the slow-varying trend of physical 

systems, including communication, climate, electrical power, 
economy, and biomedical applications [1]–[6]. Linear trend 
analysis is the commonly used model [1], [3]. Nonlinear trend 
is more general and useful in many applications [2], [5], [6]. 
This paper examines the use of nonlinear trend estimation 
from measured non-stationary signals, specifically from the 
respiratory signals measured by the piezoelectric sensor belts. 

The nonlinear trend is often corrupted or even buried by 
noise. Effective estimation is thus very challenging. There are 
traditional methods to estimate such a trend. Since the 
slow-varying trend is mainly concentrated in the lower 
frequency range, low-pass filtering (LPF) can be used [5]. 
However, it needs a priori information of a signal’s frequency 
characteristics in order to choose the cutoff frequency 
properly. Wavelet-based methods have shown to be effective 
in nonlinear trend estimation [7]. However the effectiveness 
depends on the proper choice of a basis wavelet function, 
because the choice of the wavelet filters determines the trend 
model. A data-driven technique can overcome these 
shortcomings, and empirical mode decomposition (EMD) [8] 
has shown the merit of producing basis functions from the 
signal itself. EMD can self-adaptively decompose the 
non-stationery signals, and thus has attracted increasing 
attention to trend estimation [6]. The EMD process is 
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essentially a filtering operation, through which the signal is 
represented by the sum of a series of frequency bands [9]. The 
EMD can be thus applied to construct the low-pass filtering 
for estimating the slow-varying trend.  

In the classical EMD algorithm, decomposition of a 
oscillation mode mainly depends on calculation of the upper 
and lower envelopes based on the maxima and minima of the 
signal. The mean envelope is then empirically determined as 
the local mean of the analyzed signal. However, the cubic 
spline fitting, a core step to construct the two envelopes, has 
both overshoot and undershoot problems [8]. These problems 
can be alleviated by applying higher-order spline fitting, 
which however increases the computational load. This paper 
proposes to represent the local mean by the midpoints of 
successive extrema instead of the envelope mean. The 
midpoints have the rational meaning of ‘signal mean’ and can 
thus be seen as the discrete points of the local mean of the 
signal. In this way, only one spline fitting is required to form 
the local mean rather than two in the classical algorithm. At 
the same time the number of interpolation points is increased 
to two times in comparison to the classical EMD method. 
Therefore, the midpoint-based decomposition is simpler and 
the interpolation effect can also be improved.  

Furthermore, this paper also presents a new statistical 
method to automatically select one middle residue signal in 
the decomposition as the useful trend of the raw data. 
Through this technique, trend extraction and signal 
decomposition are integrated into one systematic frame. The 
performance of the proposed method is validated by 
simulation and the practical respiratory signal trend 
estimation.   

II. METHOD 
A. Signal Acquisition 
The respiratory signals are obtained from two elastic 

piezoelectric sensor belts encircling the rib cage and abdomen. 
The experimental system is illustrated in Fig. 1. Healthy 
subjects were recruited from the University of Massachusetts 
Amherst for testing. The subjects performed a continuous test 
including 7-minute of standing and four, 7-minute treadmill 
exercise conditions: slow walking (2.4 km/h), fast walking 
(4.8 km/h), jogging (7.2 km/h) and running (9.6 km/h). A 
2-minute rest separated all treadmill conditions. As shown in 
Fig. 1(b), the measured respiratory signals contain tissue 
artifact noise due to physical activity. The respiratory 
component should be extracted as the nonlinear trend by 
removing the tissue artifact noise for further ventilation 
estimation [10].  
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Fig. 1.  Respiratory signal measurement: (a) data acquisition system; (b) 
sample of a measured signal. 

B. Midpoint-Based Decomposition 
For the classical EMD algorithm, the intrinsic mode 

functions (IMFs) is decomposed by using the envelopes to 
calculate the local mean. The overshoots and undershoots are 
the common phenomenon in the envelope calculation [8]. 
Considering the uncertainty of construction of two envelopes 
in the classical algorithm, it is ideal to determine the discrete 
point series on the local mean line, and then interpolate these 
points to obtain the local mean curve. Since the local mean is 
not a priori knowledge, the interpolation points are difficult to 
calculate. Inflection points of the signal, defined by the zeros 
of the second derivative d2x(t)/dt2 = 0,  have been used to 
interpolate the local mean, but they were considered to 
deviate from the optimal interpolation points [11]. In our 
study, the midpoints of successive extrema are proposed for 
local mean estimation. 

Mathematically, to the successive extrema of a signal at the 
time ti and ti+1 (i=0,1,…,p) with the zeros of the first 
derivative dx(t)/dt = 0, their midpoint is defined as:  
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The midpoints (Mi
t, Mi

x) represent the geometrical mean 
points of the signal. As seen in Fig. 2, in the triangle 
connected by three successive extrema, the distance of each 
extreme to the line connecting two midpoints is the same. 
Hence, the midpoints can be seen as the discrete points of the 
signal local mean and used to construct the local mean. 
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Fig. 2.  Demonstration of the midpoint theory. 

While the specific values of the maxima and minima of the 
signal being analyzed may change when noise is present, the 
nature of the midpoint calculation remains the same. The 
midpoint algorithm will not be disproportionally affected as 
compared to the traditional envelope-based method, as long 
as both methods are used to analyze the same signal, with or 
without noise. To the calculated p+1 midpoints, the piecewise 
cubic spline can be constructed in each interval [Mt

i, Mt
i+1,],     

i = 0, 1, …, p–1 by  
 3 2( )i i i i is t a t b t c t d= + + +   (2) 
to formulate the local mean with the following boundary 
conditions: 
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Since the total number of the maxima and minima is p+2, 
the midpoints have the amount p, which is nearly two times of 
that of either the maxima or the minima. As a result, 
compared to the envelope-based method, the midpoint-based 
method for local mean calculation has two advantages: 
simplicity as there is less interpolation operation and 
reliability of interpolation, since the intensity of interpolation 
points increases.  

The obtained midpoint-mean curve is then taken as m(t) for 
performing the empirical decomposition. The difference 
between the signal and the local mean, x(t)–m(t), is 
designated as a new time series h(t). The h(t) represents the 
first IMF of the signal x(t) if it satisfies two constraints as 
follows: the number of extrema and zero-crossings differs at 
most by one and the local mean is zero at any point [8]. 
Otherwise the above iteration process is repeated by taking 
h(t) as the signal itself until it becomes an IMF. Through the 
iteration process, the IMFs c1(t), …, cn(t), and the residue 
signal rn(t), are achieved by consecutively subtracting the 
local mean from the signal x(t). As a result, the signal x(t) can 
be expressed as: 
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C. Trend Decomposition 
To address the problem of slow-varying trend mixed with 

higher-frequency noise, the slow-varying trend can be 
decomposed as a residue signal by the self-adaptive 
midpoint-based method. While the decomposed trend is non- 
Gaussian, the noise, which is composed of high-frequency 
IMFs, can be considered as having a nearly Gaussian 
distribution. This inherent difference can be explored to 
separate the trend from the noise. In this study, a statistical 
approach has been developed to automatically decompose the 
slow-varying trend. The statistics applied here is the 
negentropy, which is a measure for non-Gaussianity, defined 
as follows: 
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 ( ) ( ) ( )GaussNg y H y H y= −  (5) 
where yGauss is a Gaussian random variable with the same 
variance as random variable y, and H(•) is an entropy 
function. The negentropy is zero for Gaussian variable and 
always non-negative.  

Specifically, negentropy is used to measure the non- 
Gaussianity of the residue signal ri(t) and the sum of several 
IMFs HFCi(t) in the ith order decomposition. Then the 
negentropy ratio of HFCi(t) and ri(t) is proposed as follows: 
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A big NRi value corresponds to a higher possibility for the 
existence of the slow-varying trend in ri(t). In each order of 
decomposition, the NRi (i = 1, 2, …, n) is calculated. The NRi 
curve will gradually drop and there will be an abrupt change 
on the curve when the trend is not included in the residue 
signal. The abrupt change just corresponds to decomposition 
of the slow-varying trend, and can be identified by the ratio of 
the NRi in two decomposition processes: 
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Let NR0 = 0, then RNR1 = 0. The point with an abrupt 
increasing RNRi value is regarded as the singular point to 
decompose the slow-varying trend ri(t). 

Setting the singular point as the break condition in the 
decomposition algorithm, the trend extraction can be 
integrated into the systematic frame of the midpoint-based 
decomposition. As a result, the signal x(t) can be decomposed 
to be: 
 ( ) ( ) ( )i ix t HFC t r t= +  (9) 
where ri(t) is the finally estimated slow-varying trend.  

III. SIMULATION 
To quantitatively investigate the effectiveness of the 

proposed midpoint-based decomposition method and the 
trend decomposition method, simulations were conducted as 
follows. 

A. Signal Construction 
A test signal is constructed as formulated below: 
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where Ai, fi, and θi are the amplitude, frequency and initial 
phase of applied N frequency components. The relevant 
parameters of the test signal for validating the new 
decomposition algorithm are listed in Table I.  

TABLE I 
PARAMETERS OF SIMULATED SIGNAL 

i 1 2 3 4 5 6 7 8 
Ai 0.1 0.2 0.3 0.3 0.3 0.3 0.4 0.5 

fi (Hz) 100 50 20 10 5 2 1 0.2 
θi (π) -0.5 0.5 0 0.6 1 -0.5 0 0.5 

To investigate the effectiveness of the proposed trend 
decomposition method, a test nonlinear trend signal is first 
needed as a reference base. In this study, such a test signal 
was formulated based on a real respiratory signal measured in 
the standing activity. Through the inverse Fourier transform, 
11 major frequency components identified in the respiratory 
signal spectrum were formulated by Eq. (10) to construct the 
test slow-varying trend. Together, the 11 frequency 
components represented over 92% of the energy content of 
the original signal. The constructed trend signal is considered 
to be nonlinear and not mono-component.  

To conduct the simulation of trend estimation, white noise 
was generally considered to be the noise source to corrupt the 
slow-varying trend. The noisy signal is expressed as 
 ( ) ( ) ( )S t X t e t= +  (11) 
where e(t) is the noise component defined by the 
signal-to-noise ratio (SNR): 
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where ||X(t)||2 =∑X(t)2, ||e(t)||2 = ∑e(t)2. 

B. Assessment Criteria 
The decomposition error of the predefined signals is 

evaluated by the Root Mean Square Error (RMSE) as 
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where xi is the predefined value, ˆix is the estimated value by 
the decomposition methods, and L is the signal length.  

To assess the performance of the proposed method, the 
classical envelope-based EMD method is applied in the 
simulation study as a comparison.  

C. Results 
The constructed test signal with eight frequency 

components is decomposed by the proposed midpoint-based 
decomposition algorithm and the classical envelope-based 
EMD algorithm, respectively. As shown in Table II, the 
midpoint-based method revealed a smaller RMSE value than 
the envelope-based method by over 50% which indicates the 
midpoint-based method can obtain more accurate 
decomposition results. 

TABLE II 
DECOMPOSITION ACCURACY BY RMSE 

Frequency (Hz) 100 50 20 10 5 2 1 0.2 
Envelope (10-2) 3.54 3.63 6.06 8.83 7.88 19.17 16.48 23.82
Midpoint (10-2) 1.13 1.61 2.02 2.78 3.85 4.98 6.55 5.99 
Improvement (%) 68.1 55.6 66.7 68.5 51.1 74.0 60.3 74.9 

To verify the performance of trend decomposition, more 
SNRs are considered to formulate the noisy signal. As seen in 
Fig. 3, the results show that the midpoint-based algorithm is 
more effective for smaller RMSE than the classical 
envelope-based algorithm, and the improvement of the 
proposed method is more obvious for lower SNR cases. The 
analysis indicates the midpoint-based decomposition 
algorithm is valuable for nonlinear trend estimation from the 
noisy data. 
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Fig. 3.  Trend estimation performance comparison. 

IV. EXPERIMENTAL RESULTS 
The proposed midpoint-based trend decomposition method 

is used to remove the tissue artifact noise from the measured 
respiratory signal. Considering the jogging activity, the 
measured respiratory signal was corrupted by severe tissue 
artifact noise riding on the respiratory component as small 
waves as shown in Fig. 4. Using the proposed method, at the 
fourth order decomposition, the RNR value has a clear abrupt 
increase with 200 times over the previous one. Therefore, the 
respiratory component of the signal was self-adaptively 
estimated at the third order decomposition. As seen in Fig. 4, 
the estimated respiratory component smoothly represents the 
global tendency in the local mean sense of the raw signal. The 
classical envelope-based EMD method was also compared. 
Two statistics, kurtosis and negentropy, of the removed tissue 
artifact noise were used as a quantitative measure. The 
negentropy is defined by Eq. (5) and the kurtosis is defined by 
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where μ is the mean and σ is the standard derivation of 
HFCi(t). They characterize the nature of the noise which 
represents the Gaussian property. Smaller statistical value 
corresponds to better effect. As seen from Table III, the 
kurtosis of classical method is 8.9 times that of the proposed 
method, and the negentropy ratio is 3.9. Therefore, the 
proposed method is more valuable for self-adaptively 
estimating the effective nonlinear trend of the measured 
respiratory signal. 

TABLE III 
STATISTICS OF REMOVED TISSUE ARTIFACT NOISE 

 Kurtosis Negentropy 
Envelope method 0.2417 2.71×10-5 
Midpoint method 0.0272 6.94×10-6 
Ratio (Envelope/Midpoint) 8.9 3.9 

V. CONCLUSION 
A new method has been proposed to estimate the nonlinear 

trend with an application to remove tissue artifact from the 
non-invasive measured respiratory signal. The proposed 
midpoint-based decomposition algorithm has shown to be 
simpler and more accurate in calculating the local mean of a 
signal for further iterative IMF decomposition. The presented 

negentropy-based method has shown to be effective in 
justifying decomposition of the trend. The advantage of the 
proposed midpoint-based trend decomposition method lies in 
its ability to self-adaptively, automatically and reliably 
estimate the nonlinear trend. Simulation performance using 
the formulated signals has confirmed the effectiveness of the 
proposed method for signal decomposition and nonlinear 
trend estimation from the contaminated signal outperforming 
the classical EMD method. Application to the respiratory 
component extraction has also shown the value of the 
proposed method for self-adaptive nonlinear trend 
estimation.  

 

 

 

 
Fig. 4.  Respiratory component decomposition by the proposed method and 
the performance comparison with the traditional EMD method.  
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