
  

  

 

    

Abstract— The purpose of this study is to investigate the 

potential of the ensemble empirical mode decomposition 

(EEMD) to extract cardiogenic oscillations from inductive 

plethysmography signals in order to measure cardiac stroke 

volume. First, a simple cardio-respiratory model is used to 

simulate cardiac, respiratory, and cardio-respiratory signals. 

Second, application of empirical mode decomposition (EMD) to 

simulated cardio-respiratory signals demonstrates that the 

mode mixing phenomenon affects the extraction performance 

and hence also the cardiac stroke volume measurement. Stroke 

volume is measured as the amplitude of extracted cardiogenic 

oscillations, and it is compared to the stroke volume of 

simulated cardiac activity. Finally, we show that the EEMD 

leads to mode mixing removal.  

I. INTRODUCTION 

onitoring of cardiac mechanical activity is of great 

medical interest. Some of the recent measurements of 

ventricular volumes and cardiac output involve insertion of intra-

vascular invasive catheters, or exposure to radiation. Some may 

also require the bedside presence of an experienced examiner or 

may depend on holding a transducer in the hand, which makes 

them less applicable for continuous monitoring. To avoid the 

risks associated with the insertion and indwelling of a pulmonary 

artery catheter, non-invasive techniques such as trans-thoracic 

electrical bio-impedance and non-invasive echocardiography 

have been developed. However, they are not generally accepted 

for routine use, because their accuracy under clinical conditions 

has been questioned [1]. Another non-invasive method, called 

thoraco-cardiography (TCG), has been proposed [2]. It is based 

on the principles of respiratory inductive plethysmography 

(RIP), a method widely applied for quantitative recording of 

breathing patterns. The output of an inductive plethysmograph is 

a measure of the sum of all changes in the volume enclosed by 

the transducer. According to chest TCG, respiratory movements 

during natural breathing account for approximately 95% and left 

heart ventricle activity (cardiogenic oscillations) for 5% of the 

amplitude of the waveform recorded at the level of the xiphoid 

process [2]. TCG aims to non-invasively monitor left ventricular 

stroke volume by ECG-triggered ensemble averaging and digital 
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band-pass filtering  [0.7*(cardiac frequency) Hz – 10 Hz] [3] of 

this waveform in order to suppress low frequency harmonics, 

related to respiration and other body movements, as well as high 

frequency electrical noise. TCG shows a good accuracy of stroke 

volume and cardiac output measurements. However, the filter 

parameters used in TCG depend on the heart rate estimation. 

This solution is not adapted to strong non-stationary conditions. 

The nonlinear technique, Empirical Mode Decomposition 

(EMD) has been proposed by N.E. Huang et al. for adaptively 

representing non-stationary signals as sums of zero-mean AM-

FM components ([4],[5]). In this work, we use a simple cardio-

respiratory (CR) model to test the performance of the EMD 

method for extraction of cardiogenic oscillations in inductive 

plethysmography. We also use the model to analyze the 

performance of a method based on EMD and named ensemble 

empirical mode decomposition (EEMD) [6].  

II. EMPIRICAL MODE DECOMPOSITION 

Empirical mode decomposition is a signal processing 

technique to extract all the oscillatory modes embedded in a 

signal without any requirement of stationarity or linearity of the 

data ([7],[8]). The extracted modes, with well-defined 

instantaneous frequencies, are speculatively associated with 

specific physical or physiological aspects of the phenomenon 

investigated [9]. Hence, EMD has found immediate applications 

in biomedical engineering [10].  

By contrast with decomposition methods based on wavelets, 

the EMD method is data driven; hence, when applying EMD, we 

neither need to define a mother wavelet beforehand for 

singularity detection or wavelet decomposition [11], nor face the 

inevitable interference terms and energy leakage that generate a 

number of small undesired spikes over the whole frequency 

range of time consuming continuous wavelet transform ([12], 

[8]). In addition, although wavelet decomposition has good time 

resolution in the high-frequency region, it often cannot separate 

events separated by a small time interval. Thus, EMD operation 

is not time consuming, can deal with large nonlinear non-

stationary signals [13].  

With the EMD technique, any complicated signal can be 

decomposed into a definite number of high-frequency and low-

frequency components, which are called intrinsic mode functions 

(IMFs). In [14], it has been shown that EMD can be 
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useful to extract local temporal structures such as the heart beat 

superimposed on respiration signals in order to monitor 

respiration and cardiac frequencies during sleep using a flexible 

piezoelectric film sensor (pressure fluctuations). NB.: cardiac 

stroke volume (SV) of the extracted cardiac signal was not 

studied here.  

By definition, an Intrinsic Mode Function satisfies two 

conditions: 

1. The number of extrema and the number of zero 

crossings may differ by no more than one, and 

2.    The local average is zero. It is defined by the average 

of the maximum and minimum envelopes.  

These properties of IMFs allow for instantaneous frequency and 

amplitude to be defined unambiguously [15]. 

Given these two defining requirements of an IMF, the sifting 

process for extracting IMFs from a given signal x(t), t= 1… T is 

described as follows [16]:  

1. Identify all the maxima and minima of x(t). 

2. Generate its upper and lower envelopes, xup(t) and 

xlow(t), with cubic spline interpolation. 

3. Calculate the point-by-point mean from the upper and 

lower envelopes, m(t) = (xup(t) + xlow(t))/2. 

4. Extract the detail, d(t) = x(t) – m(t). 

5. Check the properties of d(t): 

• If d(t) meets the above-defined two 

conditions, an IMF is derived. Replace x(t) 

with the residual r(t) = x(t) – d(t); 

• If d(t) is not an IMF, replace x(t) with d(t). 

        6.  Repeat Steps 1-5 until one obtains a monotonic residual, 

or a single maximum or minimum-residual satisfying some 

stopping criterion [5].  

 

At the end of this process, the signal x(t) can be expressed as 

follows: 

x(t) = ∑
=

+

N

j
Nj

trtc
1

)()(                                                (1) 

where N is the number of IMFs, and )(tr
N

 denotes the final 

residue, which can be interpreted as the DC component of the 

signal. )(tc
j

are the IMFs and are orthogonal to each other and 

all have zero means [16]. 

III. MODE MIXING AND ENSEMBLE EMPIRICAL MODE 

DECOMPOSITION 

It is worth noting that EMD is defined by the algorithm and 

has no analytical formulation; hence, our understanding of EMD 

comes from experimental rather than analytical results [5]. From 

experimental results, it has been shown that mode mixing and 

mode intermittency are the major obstacles to the use of EMD 

on many signals, including cardio-respiratory signals like the 

ones measured using a flexible piezoelectric film sensor, as in 

the above-mentioned reference [14]. Mode mixing indicates that 

oscillations of different time scales coexist in a given IMF, or 

that oscillations with the same time scale have been assigned to 

different IMFs. Hence, this leads to a misunderstanding of the 

real process. 

Reference [17] summarizes EMD behavior for the case of the 

sum of two sinusoidal signals as well as for the case of the sum 

of two non-linear signals. The authors show that when studying 

mode mixing the amplitude and frequency ratios between the 

components of the signal should be taken into account.   

To overcome mode mixing, a new method using added noise 

has been proposed: EEMD [6] (ensemble empirical mode 

decomposition). This method defines the true IMF as the 

average over a set of tests; each test is the EMD of the original 

signal with added white noise, in order to obtain a collection of 

white noise signals which cancel each other. Therefore, only the 

real components can survive and persist in the final average. The 

amplitude of white noise signals must force the ensemble to find 

all possible solutions: the noise makes the various components 

reside in the corresponding IMF dictated by the EMD filter 

banks and the significant physical sense of IMF.  The number of 

tests must be sufficiently high, which leads to a time-consuming 

procedure.  

IV. CARDIO-RESPIRATORY MODEL 

In this paper, we use an improved version of our cardio-

respiratory (CR) model [18] to simulate CR, respiratory, and 

cardiac volume signals. The model consists of a respiratory 

module added to a simple cardiac wave generator to simulate the 

respiratory pattern, alveolar volume, pleural pressure, and 

cardiac activity as well as chest wall mechanics and volume 

variations (simulated inductive plethysmography signal). We 

develop here an improved model taking into account left 

ventricle (LV) stroke volume modulation during respiration and 

the fact that LV stroke volume lies within [0.08  0.2] * Tidal 

Volume. Ranges of physiological respiratory-to-cardiac 

frequency ratios are respected (3Fr<Fc<8Fr) and are held 

constant in the simulations. 

Our previous model [18] aiming to simulate apnea did not 

take into consideration CR interactions during respiration. It 

consisted of three interconnected elements: rib cage, heart, and 

lung. The relationship between rib cage, alveolar, and intra-

thoracic blood volumes (respectively, Vth, VA and Vlv) is given 

by the equation: 
 

VAVlvVth +=                                                                    (2) 
 

 Cardiac mechanical activity is represented by the periodic 

(cardiac frequency, Fc) changes of intra-thoracic blood volume. 

In every cardiac cycle, intra-thoracic blood volume varies with 

amplitude equal to the stroke volume [18]. In a heart cycle 

(cardiac period Tc =1/Fc), there are two phases: filling until the 

onset of ejection (Tej; we arbitrarily chose Tej = Tc*3/4) and 

ejection. Between t=0 and Tej, the simulated intra-thoracic 

blood volume (Vlv) increases linearly with time from 0 to stroke 

volume (Vstr). Between Tej and Tc, simulated intra-thoracic 

blood volume decreases linearly with time from Vstr to 0. The 

shape of the generated cardiac wave is then triangular, similar to 

cardiogenic oscillations observed during apnea [18].  
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 In the previous model, Vstr was held constant along the 

simulated period, and the chest wall was purely elastic (elastance 

Ecw) such that  
 

VthPpl *Ecw=                                                                         (3) 

where Ppl is pleural pressure, considered as intra-thoracic 

pressure. 
 

The lung was simulated by an elastic compartment (elastance 

El, volume VA) submitted to pleural pressure and connected to 

the atmosphere by a resistive tube (resistance Raw). The 

behavior of this compartment obeys the following equation: 
 

Raw

El VA)* + (Ppl -
=

dt

d(VA)                                                             (4) 

 

 The improved model has been developed to include 

mechanical CR interactions during respiration. Stroke volume 

modulation due to respiration (decrease during inspiration and 

increase during expiration) is simulated by equation (5), where C 

is a parameter (equal to 0.03 L²). 

VA
Vstr

C
=   ,  limited to 0.15 L.                                                        (5) 

Respiratory pattern generator behavior is described by [19]: 

x=(y)
dt

d
.α                                                                                                   (6)                               










dt

d(VA)
+y)+(xy)+y(=(x)

dt

d
.HB..b.a.α 2                                   (7) 

 

where a, b and HB are -0.8, -3 and 1 respectively, and y 

represents respiratory center activity. This dynamical system 

takes into account the observed reflex effect of changes in lung 

volume on the respiratory centers. The parameter α     that we 

added to the initial respiratory oscillator [19] allows simulation 

of various respiratory frequencies (Fr) observed among 

individuals. 
 

α    = 
7.12

Fr
                                                                                                (8) 

 

The value 12.7 cycles/min is the respiratory frequency of the 

initial respiratory oscillator.  

 Respiration occurs as a result of nonzero respiratory muscles 

activity (Pmus) leading to the reduction or rise in the pleural 

pressure (Ppl). This leads to replacement of equation (3) by (9): 
 

Ecw*)Vth0( −+= VthPmusPpl                                                        (9) 
 

where Pmus is defined as follows: 

 µ.λ +y=(Pmus)
dt

d                                                              (10) 

where µ and λ are parameters (1.1 and 1.03 respectively) and 

Vth0 represents the non-stressed rib cage volume (2 L). 

 

Simulated stationary Vth is decomposed by the EMD (2000 

sifting iterations) and the EEMD methods (a set of 5000 white 

noise signals with an amplitude of 1.6 times the r.m.s of RIP 

signal). For EEMD, the number of sifting iterations is limited to 

10 in order to avoid over-sifting [6]. Left ventricle volume signal 

(Vlv) is used as the reference cardiac activity. Stroke volumes 

and periods of stationary extracted cardiac activity are compared 

with SV and periods of simulated cardiac mechanical activity.  

V. RESULTS ON SIMULATED DATA 

Figure 1 shows simulated Vth and the result of its 

decomposition by classical EMD.  In IMF 3, we clearly notice 

mode mixing between respiratory and cardiac components.  

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Fig. 1. Curves represent (from top to bottom) simulated Vth (L), 

IMFs and residual. IMF1 and IMF2 scale (A.U) is [-0,0448   

0,056], other IMFs and residual scale (A.U) is [-0,4481   

0,5601]. The method used is classical EMD. Mode mixing is 

indicated by arrows. 

 

Figure 2 shows simulated Vlv and extracted Vlv (the sum 

of the first two IMFs) superimposed. As mentioned 

previously, the EMD algorithm results in locally symmetric 

IMFs [5]. For this reason, we can see that the sum of the first 

two IMFs in figure 2 does not fit the asymmetric simulated 

cardiac reference. Besides, mode mixing between cardiac 

and respiratory components leads to the fact that there are 

some components missing in the extracted cardiac activity. 

Bland & Altman test for stroke volume comparison between 

extracted and simulated cardiac activity gives limits of 

agreement (95% confidence interval) between -20% and 

40% whereas TCG gives limits of agreement between -20% 

and 20% according to TCG results in [2]. This means that 

classical EMD should be further optimized to get better 

results. 

 

 When we apply EEMD, no mode mixing is found, as 

indicated by the Teager-Kaiser energy calculated for every 

IMF[20]. Figure 3 shows simulated Vlv and extracted Vlv 

(the sum of IMFs 2:5) superimposed. We do not take the 

first IMF as one of the cardiac modes, because it is 

considered as white noise. The Bland & Altman test for 

stroke volume comparison between extracted and simulated 

cardiac activity shown in the figure gives limits of agreement 

(95% confidence interval) between -18% and 21%, 

indicating that EEMD gives satisfactory results.  
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Fig. 2. Curves represent simulated Vlv (dashed) and symmetric 

extracted volume by EMD (as the sum of the first two IMFs). All 

beats are found. Amplitude scale is in A.U. Mode mixing is 

indicated by arrows. 
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Fig. 3. Curves represent simulated Vlv (dashed) and symmetric 

extracted volume by EEMD (as the sum of IMFs 2:5). All beats 

are found. Amplitude scale is in A.U. There is no mode mixing 

at the previously observed positions indicated by arrows. 

VI. CONCLUSION 

In this paper, we apply EMD and EEMD to a simulated 

stationary cardio-respiratory signal in order to extract cardiac 

activity. These preliminary results show that the EMD method 

suffers from mode mixing problems which can be solved by 

EEMD.  

EEMD is a promising nonlinear method for efficient 

cardiogenic oscillations extraction in inductive plethysmography 

signal. Nevertheless, EEMD may lead to scale mixing. Scale 

mixing [6] is caused by the limitation of sifting iterations 

number, and is represented by IMF containing the sum of 

two consecutive modes. The solution of ‘’post-processing’’ 

is proposed in [6]. One of our perspectives is to study the 

presence of scale mixing in cardio respiratory 

decomposition. More precisely, we will study EEMD 

efficiency when applied to non-stationary simulated and real 

signals.  

REFERENCES 
[1] D. R. Spahn et al., Noninvasive versus invasive assessement of cardiac 

output after cardiac surgery: clinical validation. Journal of 

cardiothoracic anesthesia. (1990), 4, 1, pp. 46-59.   

[2] M. A. Sackner et al., Thoracocardiography part 1: non-invasive 

measurement of changes in stroke volume; comparisons to 

thermodilution, Chest. (1991), 99, 3, pp.  613- 622.  

[3]  G. B. Bucklar  et al., Signal processing technique for noninvasive real-

time estimation of cardiac output by inductance cardiography 

(thoracocardiography), Medical & biological engineering & 

computing. (2003), 41, 3, pp. 302-309.  

[4] N. E. Huang et al., The empirical mode decomposition and Hilbert 

spectrum for nonlinear and non-stationary time series analysis, 

Proceedings - Royal Society.  Mathematical, physical and engineering 

sciences. (1998), 454, 1971, pp. 903-995. 

[5] G. Rilling et al., On empirical mode decomposition and its algorithms, 

IEEE-EURASIP Workshop on Nonlinear Signal and Image proc., 

(2003), NSIP-03, Grado (I). 

[6] W. Zhaohua et al. Ensemble Empirical Mode Decom-position: A Noise 

Assisted Data Analysis Method. Advances in Adaptive Data Analysis, 

(2009), 1, pp. 1-41. 

[7] H. Liang et al., Empirical mode decomposition: A method for analyzing 

neural data. Neurocomputing, (June 2005), 65-66, pp: 801-807.  

[8] S. Charleston-Villalobos  et al., Crackle sounds analysis by empirical 

mode decomposition. Engineering in Medicine and Biology Magazine, 

IEEE. (Jan.-Feb. 2007), 26,  1, pp 40-47 

[9] R. Blocchi et al., Deriving the respiratory sinus arrythmia from the 

heart beat time series using empirical mode decomposition, Chaos, 

Solitons and Fractals (2004), 20,  1,pp.171-177. 

[10] W. Huang et al., Engineering analysis of biological variables: An 

example of blood pressure over 1 day, Proc Natl Acad Sci U S A. 

(April 1998), 95, 9, pp. 4816–4821.   

[11] S. Mallat,  et al., Singularity detection and processing with wavelets. 

Infor-mation Theory, IEEE Transactions (Mar 1992), 38, 2, Part 2, pp 

617-643. 

[12] Z. Peng et al., Vibration signal analysis and feature extraction based on 

reassigned wavelet scalogram, Sound and Vibration. (20 June 2002), 

253, 5, pp. 1087-1100 

[13] R.X. Gao et al., Non-stationary signal processing for bearing health 

monitoring, International Journal of Manufacturing Research. (2006), 

1, 1, pp. 18 – 40. 

[14] B. Nan et al., Monitoring of Respiration and heart beat during sleep 

using a flexible piezoelectric film sensor and empirical mode 

decomposition, 29th Annual International Conference of the IEEE. 

(2007), pp. 1362 - 1366. 

[15]  R. Deering, et al., The use of a masking signal to improve empirical 

mode decomposition. Acoustics, Speech, and Signal Processing (18-23 

March 2005), 4, 4, pp iv/485- iv/488. 

[16]  H. Liang, et al., Application of the empirical mode decom-position to 

the analysis of esophageal manometric data in gastro-esophageal 

reflux disease, IEEE EMBS (2004). 

[17] G. Rilling et al., One or Two Frequencies? The Empirical Mode 

Decomposition Answers, IEEE Trans. on Signal Processing (2008), 56, 

1, pp. 85-95.  

[18] E. Abdulhay et al., Stroke volume estimation by Thoraco-cardiography 

is better when glottis is closed, IEEE EMBC, (2007). 

[19] L.  Forest et al., Lienard systems and potential-Hamiltonian 

decomposition – III Applications, C. R. Acad. Sci. Biologies, (2007), 

330, pp. 97-106. 

[20] C. Yunchao et al., Analysis and solution to the mode mixing 

phenomenon in EMD, Congress on Image and signal processing 

(2008). 
 

2243


	MAIN MENU
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order
	Themes and Tracks

