
  

  

Abstract—In this work an entropy based nonlinear analysis 
of pathological voices is presented. The complexity analysis is 
carried out by means of six different entropies, including three 
measures derived from the entropy rate of Markov chains. The 
aim is to characterize the divergence of the trajectories and 
theirs directions into the state space of Markov Chains. By 
employing these measures in conjunction with conventional 
entropy features, it is possible to improve the discrimination 
capabilities of the nonlinear analysis in the automatic detection 
of pathological voices. 

I. INTRODUCTION 
he systems for automatic assessment of voice disorders 
have received considerable attention in the last years 

due to its objectivity and non invasive nature. Much of the 
work done in this area is based on the use of acoustic 
parameters, noise measurements and cepstral coefficients 
[1]. However, several researchers have shown that there is a 
physical phenomenon involved in the voice production 
process that cannot be characterized by the above measures, 
termed Nonlinear Behaviour. In the context of speech, such 
a behaviour is due to the following mechanisms: nonlinear 
pressure-flow relation in the glottis, delayed feedback from a 
mucosal wave, the nonlinear stress-strain curves of vocal 
fold tissues, and the nonlinearities associated with vocal fold 
collision [2]. In order to overcome this problem, some 
researchers applied tools from nonlinear time series analysis 
to disordered speech signals to characterize these nonlinear 
phenomena (see [3] and cites therein). The most common 
nonlinear analysis from time series is derived from the 
theory of dynamical systems, and, most of the cases, it is 
performed by using two statistics: Largest Lyapunov 
Exponent (LLE) and Correlation Dimension (CD). LLE is a 
measure that attempts to quantify the sensibility on the initial 
conditions of the underlying system [4]. CD is a measure 
designed for quantifying the geometry (self-similarity) in the 
state space of the underlying system [4]. Different 
researches have shown that changes in nonlinear dynamic 
measures may indicate states of pathophysiological 
dysfunction [3]. In [3] the CD was used  to describe the 
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complexity of sustained vowels produced by normal 
speakers and by patients with vocal polyps. The database 
contained 79 normal samples and 68 pathological samples of 
the sustained vowel /a/. The authors concluded that the CD 
is higher in pathological than in normal speech, and that the 
nonlinear analysis can be used as a supplementary method in 
speech signal processing to clinically evaluate and detect 
laryngeal pathologies. In [5] as a continuation of the above 
work, the authors used the CD to discriminate between three 
types of speech signals according to the definition by Titze 
[2]. In this case, different types of pathologies were included 
on the database, but speech signals with strong glottal 
turbulences were excluded. Although LLE and CD have 
shown certain discrimination capabilities between normal 
and pathological voices, such nonlinear statistics require the 
dynamics of speech to be purely deterministic, and this 
assumption is inadequate, since randomness due to 
turbulence is an inherent part of speech production [6]. 
There are also numerical, theoretical and algorithmic 
problems associated with the calculation of LLE and CD for 
real speech signals, casting doubts over the reliability of 
such tools [6].  

To overcome this constriction, a set of features based on 
information theory have been published in the literature. 
Such measures attempt to quantify the signal complexity as 
an alternative way for measuring the nonlinear behaviour, 
without making assumptions about the nature of the signal 
(deterministic or stochastic). The most common measures 
used in that context are: Approximate Entropy [7], Sample 
Entropy (AE) [7] and a modification of the AE called 
Gaussian Kernel Approximate Entropy (GAE)  [8]. This 
measures proportionate a better parameterization of the 
nonlinear behaviour, but some of them present a problem 
with bias [9]. Additionally, from a pattern recognition point 
of view, they make a non parametric estimate of the 
probability mass function of the embedding attractor using a 
Parzen-window method with a Gaussian or Square kernel 
[10]. They only attempt to quantify the divergence of the 
trajectories of the attractor but do not take into account the 
directions of divergence.  

In this work, we use a Discrete Hidden Markov Model 
(DHMM) to estimate a nonparametric density function of 
the attractor in order to determine the divergence of the 
trajectories and its directions into the state space in terms of 
the transitions between regions provided by the DHMM, and 
then we use an empirical entropy measure in conjunction 
with above pointed out entropy measures to characterize the 
complexity of the signals. 
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II. METHODS 

A. Embedding 
The state space reconstruction is based on the Time-

Delay Embedding Theorem [4], which can be written as 
follows: Given a dynamic system with a m-dimensional 
solution space and an evolving solution h(t), let x  be some 
observation x(h(t)). Let us also define the lag vector (with 
dimension m and common time lag τ) as x(t)≡(xt, xt-τ,…, xt-(m-

1)τ). Then, under very general conditions, the space of 
vectors x(t) generated by the dynamics contains all the 
information of the space of solution vectors h(t). The 
mapping between them is smooth and invertible. This 
property is referred to as diffeomorphism and this kind of 
mapping is referred to as an embedding. The embedding 
theorem establishes that, when there is only a single sampled 
quantity from a dynamical system, it is possible to 
reconstruct a state space (embedding attractor) that is 
equivalent to the original (but unknown) state space 
composed of all the dynamical variables [4]. In this work the 
embedding dimension m was chosen using the false 
neighbours method and time–delay τ by using the first 
minimum of the auto mutual information function [4]. 

B. Parameterization 
  The entropy is a measure of the uncertainty of a random 
variable [11]. Let X be a discrete random variable with 
alphabet X  and probability mass function p(x)=Pr{X=x}, 
x ∈X . The Shannon entropy H(X) is defined by: 

( ) ( ) ( )log
x

H X p x p x
∈

= −∑
X

 (1) 

If instead of one random variable we have a sequence of n 
random variables (i.e. a stochastic process), the process can 
be characterized by a joint probability mass function: 
Pr{X1=x1,…,Xn=xn}=p(x1,x2,…,xn). Under the assumption of 
existence of the limit, the rate at which the joint entropy 
grows with n is defined by [11]: 

( ) ( )1 2
1 1lim , ,..., limn nn n

H X H X X X H
n n→∞ →∞

= =  (2) 

If the set of random variables are independent but not 
identically distributed, the entropy rate is given by: 

( ) ( )
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1lim
n

in i
H X H X

n→∞
=

= ∑  (3) 

On the other hand, let the state space be partitioned into 
hypercubes of content εd, and the state of the system  
measured at intervals of time δ. Moreover, let p(k1, … , kn) 
denote the joint probability that the state of the system is in 
the hypercube k1 at t=δ, k2 at t=2δ. The Kolmogorov-Sinai 
(KS) entropy is defined as [9]: 
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The KS entropy measures the mean rate of creation of 
information [9]. For stationary processes it can be shown 
that [9]: 

( )10 0 0
lim lim limKS n nn

H H H
δ ε +→ → →

= −  (5) 

Numerically, only entropies of finite order n can be 
computed. However, some methods have been proposed in 
an attempt to estimate the KS entropy. One of them is the 
Approximate Entropy (AE). AE is a measure of the average 
conditional information generated by diverging points on the 
trajectory [7;9]. AE is defined as a function of the 
Correlation Sum (CS) given by: 

( ) ( ) ( )( )
1

2 norm ,
1

N
m
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N N = +

= Θ −
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where Θ  is the Heaviside function, N is the number of 
points in the state space and the norm can be defined in any 
consistent metric space. The CS is the fraction of all possible 
pairs of points in the state space which are closer than a 
given distance r in a particular norm. For a fixed m and r,  
AE is given by: 
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E N

A m r r r+

→∞
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A first modification of AE presented in [7] called Sample 
Entropy (SE), was developed with the aim of obtaining a 
more independent measure of the signal length than AE. SE is 
given by: 

( ) ( )
( )

1

, lim ln
m

E mN

r
S m r

r

+

→∞

Γ
= −

Γ
 (9) 

The difference between Г and Ф is that the first one does 
not compare the embedding vectors with themselves 
(excludes self-matches). The advantage is that the estimator 
is unbiased [9].  

Another modification of AE presented in [8], called 
Gaussian Kernel Approximate Entropy (GAE), changes the 
Heaviside function by a Gaussian Kernel based function 
with the aim of suppressing the discontinuity of the auxiliary 
function over the correlation sum (square kernel). In this 
case, the Heaviside function is replaced by: 

( ) ( )( )2
2

1
, exp , /10G i j i jd r⎛ ⎞= −⎜ ⎟

⎝ ⎠
x x x x  (10) 

By using eq. (10), the estimation of GAE is done in the same 
way than for AE (see eqs. (7) and (8)). 

C. Hidden Markov Entropy 
 A Markov chain is a random process {X(t)} which can 
take a finite number of k values at certain moments of time 
(t0 < t1 < t2 < ···). The values of the stochastic process change 
with known probabilities called transition probabilities. The 
particularity of this stochastic process is that the probability 
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of change to other state depends only on the current state of 
the process; this is known as the Markov condition. When 
such probabilities do not change with time and the initial 
probability of each state is also constant, the Markov chain 
is stationary. Let {X(t)}  be a stationary Markov chain with 
initial distribution π and transition matrix A. Then the 
entropy rate is given by [11]: 

( ) logi ij ij
ij

H A Aπ= −∑X  (11) 

In view of eq. (11), it is possible to observe that the 
entropy measure is a sum of the individual Shannon entropy 
measures for the transition probability distribution of each 
state, weighted with respect to the initial probability of its 
corresponding state. There exist some processes that can be 
seen like a Markov chain whose outputs are random 
variables generated from probability functions associated to 
each state. Such processes are called Hidden Markov 
Processes (HMP), because the states of the Markov process 
cannot be identified from its output (the states are “hidden”). 
In this case, it is not possible to obtain a close form for the 
entropy rate [11;12]. A HMP can also be understood as a 
Markov process with noisy observations [12]. Therefore, in 
the same way as in eq. (11), it is possible to establish an 
entropy measure of the HMP as the entropy of the Markov 
process plus the entropy generated by the noise in each state 
of the process. We called to this measure Empirical Entropy. 
If we use a DHMM for modeling the stochastic process, the 
noise is modeled by means of discrete distributions and 
finally it is possible to obtain a probability mass function for 
the noise in each state.  

Denoting the actual state of the process in time t as St, a 
DHMM can be characterized by the following parameters 
[13]: 
− π={πi}, i=1,2,…,k: the initial state distribution, where 

πi =p(S0=i) is the probability of starting at the i-th 
state.  

− A={Aij}, 1≤i,j≤k: the set of transition probabilities 
among states, where Aij=p(St+1=j|St=i) is the 
probability of reaching the jth state at time t+1, 
coming from the ith sate at time t.  

− B={Bij}, i=1,2,…,k, j=1,2,…,φ: the probability 
distribution of the observation symbol, being 
Bij=p(ot=υj|St=i), where ot is the output at time t, υj are 
the different symbols that can be associated to the 
output, and φ is the total number of symbols. All 
parameters are subject to standard stochastic 
constrains [13]. 

From this definition, the empirical entropy can be defined 
as: 

ES MC gH H H= +  (12) 
where HMC is the entropy due to the Markov process, as it 
was defined in eq. (11), and Hg is the entropy due to the 
noise. By replacing both entropies, HES can be written as: 
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k k
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If instead of using Shannon Entropy in the definition of 
the empiric entropy we use the Renyi Entropy [11], the 
empiric entropy becomes: 

1 1 1 1

1log log
1 1ij ij

k k k
i

ER
i j i j

H A B
ϕ

α απ
α α= = = =

= +
− −∑ ∑ ∑ ∑  (14) 

where α>0; α≠1 is the entropy order. In this work we are 
using α=2, since it is the most common Renyi Entropy [11]. 

III. EXPERIMENTAL SETUP 

A. Database 
The database used was developed by The Massachusetts Eye 
and Ear Infirmary Voice Laboratory (MEEIVL) [14]. The 
recordings were resampled to 25 kHz and 16 bits of 
resolution. The registers contain the sustained phonation of 
the /ah/ vowel from patients with a variety of voice 
pathologies: organic, neurological, and traumatic disorders. 
A subset of 173 registers of pathological and 53 normal 
speakers has been taken according to those enumerated in 
[15]. All the files were chosen to have a diagnosis and 
similar age distributions between both groups. 

B. Results  
  In this work the speech signal is divided into frames in 

order to be parameterized by means of short-time analysis 
with the aim of taking into account as much dynamic 
information as possible. For each frame, the entropy based 
features described in sections II.B and II.C are estimated. 
The size of the each window has been chosen as 55 ms and 
the parameter r=0.35 according to the results presented in 
[16]. The classification is based on a DHMM with k=3 states 
and φ=128 symbols. These values were determined as the 
best after a set of experiments using different values of k and 
φ. The validation is performed by using a cross-validation 
method with 11 folds, using 70% of the speech recordings in 
the training step and 30% in the validation step. Table I 
shows the discrimination capacities of each feature, it is 
possible to observe that the empirical entropies (HES, HER) 
reach a higher accuracy rate than the rest. This fact shows 
that the estimation of the probability density function made 
by the DHMM allows not only characterize the state space 
but the transitions between different regions one from the 
trajectories of the attractor.  

 
TABLE I. 

 DISCRIMINATION CAPABILITIES OF THE COMPLEXITY 
MEASURES IN THE DETECTION OF PATHOLOGICAL VOICES. 
Feature Sensitivity Specificity Accuracy 

AE 85.74% 56.97% 79.20% 
SE 93.4% 63.03% 86.50% 

GAE 88.95% 52.12% 80.58% 
HMC 89.30% 76.36% 86.36% 
HES 91.09% 75.76% 87.60% 
HER 92.87% 75.15% 88.84% 

 
By using the whole set of features it is possible to reach a 

classification accuracy of 92.70%. Without the empirical 
entropies the accuracy reached 87.39%.  
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This suggest that the empirical entropies contain 
additional and complementary information related to the 
system complexity. Thus, an improvement can be obtained 
using this feature in conjunction with other complexity 
measures. Figure 1 shows the ROC curves for each of the 
features in a comparative way. It is possible to observe that 
HER covers a larger area in the graph. 
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Fig 1. ROC curves for the system using the features in the Table I. 
 
Figure 2 shows the DET plot for the best three features in 

Table I, which correspond to Markov chains based 
entropies. In this case, for HER is possible to define an 
operating point closer to lower left corner than the rest. 
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Fig 2. DET plot for the system using Markov chains based entropies 

IV. CONCLUSIONS 
The characterization of the embedding space carried out 

by DHMM takes into account additional information related 
to transitions between different regions of the state space 
from the trajectories of the attractor, which is reflected in the 
discrimination capabilities of the empirical entropy. The use 
of the empirical entropy in conjunction with the approximate 
entropy, sample entropy, and Gaussian kernel approximate 

entropy, allows obtaining accuracies above 92%, only 
analyzing the nonlinear behavior of the speech signals.  

This methodology does not attempt to replace the analysis 
based on classical acoustic parameters, but to show a 
different alternative for the nonlinear analysis of voice 
signals, complementing the traditional multidimensional 
studies that use to be carried out for the objective 
characterization of voice pathologies. 
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