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Abstract— In this work we present an integrated method for
electroencephalography (EEG) source localization in newborn
infants, based on a realistic head model. To build a realistic head
model we propose an interactive hybrid segmentation method
for T1 magnetic resonance images (MRI), consisting of active
contours, fuzzy c-means (FCM) clustering and mathematical
morphology. Subsequently, we solve the localization problem
using a spike train detection algorithm and an algorithm that
deals with the forward and inverse problem. The performance
of this fused method indicates that our realistic head model is
suitable for the accurate localization of the EEG activity. We
will present both initial qualitative and quantitative results.

I. INTRODUCTION

EEG is a powerful tool for measuring and recording the

electrical activity of the brain. Due to its non-invasiveness,

it is intensively used in the diagnosis of neonatal seizures.

Seizures in this study are caused by asphyxia and most

commonly result in irregular activities in the EEG, like

spikes. EEG source localization methods provide neurologist

with the regions of the brain where spikes are generated.

These methods also estimate the active anatomical zones

based on the measured EEG signals and a (realistic) head

model.

EEG source localization consists of two subproblems: the

forward problem, that calculates the electrode potentials in

a head model, given the source (usually a current dipole)

and the inverse problem, that is solved by finding the

dipole which best represents the given potentials at the scalp

electrodes. This can be performed iteratively by modifying

the dipole parameters, until, for a given set of parameters, the

associated potentials (found by solving the forward problem)

represent the measured potentials best. Besides the current

dipole, as a model for active neurons, a volume conductor

model is required to perform EEG source localization in a

head model. A spike (train) detection method and potential

extraction method for preterm spike EEG is proposed in [1]

and an algorithm that solves both the forward and inverse

problem taking into account a volume conductor model is

explained in [2].

Nevertheless, an essential part in obtaining accurate source

localization in the newborn brain is the selection of a head

model for the forward problem. In the previous studies,
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simple concentric sphere models, representing different con-

ductive layers like brain, scalp and skull, are used, in order to

simplify the calculation of the forward and inverse problems.

However, using a spherical instead of a realistic head model

results in a dipole location error [3]–[5]. Hence, a simple

(spherical) head model in the highly underdeveloped and

amorphic newborn brain, can produce inaccurate source

localization. Thus, it is necessary to develop a realistic head

model, which is the subject of the present paper.

Both the needed MRI segmentation to build a realistic

head model as well as the entire localization chain, will be

explained in this study and applied to a specific subject. The

paper is organized as follows: In Section II the proposed MRI

segmentation, spike train detection and source localization

methods are explained. Results and a discussion are given in

Section III. Finally, Section IV concludes this paper.

II. METHOD

A. MRI segmentation

In comparison to an adult head, segmentation of preterm

MRI volumes is a more complex and challenging task. The

difficulties are mainly caused by: an underdeveloped brain

and skull, large intensity overlaps between different tissues,

intensity inhomogeneity, low contrast to noise ratio, motion

artifacts (ghosting effects) and low inter-slice resolution. To

date, many MRI segmentation techniques have been reported

for the adult and neonatal brain [6]–[9]. The most popular

methods include clustering techniques, such as expectation-

maximization (EM) algorithms and fuzzy c-means (FCM)

clustering.

For the purpose of realistic head modeling, we present a

hybrid segmentation algorithm that combines active contours,

FCM clustering and mathematical morphology. Due to the

low inter-slice resolution, each slice is processed separately

and the head is segmented into five labels: skin, fat, skull,

cerebrospinal fluid (CSF) and brain tissue. White and gray

matter are segmented as one class (brain tissue), because of

the same conductivity for the neonatal brain.

The proposed algorithm is implemented in the five follow-

ing steps (see Fig. 1):

Step 1: Segmentation of the head and the background

using active contours [10].

Step 2: Extraction of the neonatal brain. Although there

are many different solutions developed for adult brain extrac-

tion (BSE - Brain Surface Extractor, BET - Brain Extraction

Tool, etc.), none of them satisfy our need. Therefore, the

free ITK-SNAP software is used to delineate brain from head

manually.
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Fig. 1. Outline of the proposed MRI segmentation algorithm.

Step 3: Brain segmentation into two clusters, CSF and

brain tissue, using a FCM segmentation algorithm with

adaptive enhancement [9], [11]. First, in order to increase

the performance of the algorithm (validity and speed of

convergence) and to generate a fast and reliable estimator

of the FCM’s parameters (i.e. the centers of the clusters

and the membership degree function), an intensity-based

thresholding is used [12]. Next, pixels are classified using

an unsupervised FCM clustering method, that is based on

minimizing the following objective function:

Jm(U, V : X) =

C
∑

i=1

n
∑

k=1

(uik)m(‖xk − vi‖)
2 (1)

X = {xk}
n
k=1 ⊂ Rq is a data matrix, q is the dimension of

each xk feature vector, and n is the number of feature vectors

(pixel number in the image). The parameter m controls the

fuzzyness of the resulting partition, and m = 2 is used

in this study. U = [uik] is a C × n matrix, where uik is

the membership function of vector xk belonging to the i-th
cluster. The membership function satisfies uik ∈ [0, 1] and
∑C

i=1 uik = 1, (k = 1, 2, ..., n). V = {vi}
C
i=1 is the set of

feature cluster centers and C is the number of clusters. The

membership function and the cluster centers are given by:

uik =
[

C
∑

j=1

(‖xk − vi‖/‖xk − vj‖)
2

m−1

]−1
(2)

vi =

n
∑

k=1

(uik)m
xk /

n
∑

k=1

(uik)m , (i = 1, 2, ..., C) (3)

where ‖xk − vi‖ = d2(xk − vi) is the Euclidian norm, that

measures the similarity between xk and vi. In our algorithm,

the feature vector is the pixel intensity (q = 1).

The FCM algorithm iteratively optimizes Jm, by updating

U and V until maxi∈[1,C] ‖v
(l)
i − v

(l+1)
i ‖∞ < ǫ, where l is

Fig. 2. Segmentation result of the head of a 39 weeks old infant. Upper row
shows original T1 MRI images and the lower row presents the segmented
images. At the bottom is given explanation of the labels.

the number of iterations and ‖ · ‖∞ is the maximum norm.

Once the final U is obtained, we apply a de-fuzzification of

the fuzzy clusters {Fi}
C
i=1 into its crisp version {Hi}

C
i=1 as

follows: xk ∈ Hi, if maxj∈[1,C](ujk) = uik.

Subsequently a locally adaptive enhancement is performed

as follows: for pixels whose maximum membership degrees

are considered too low (less then 0.8), a median filter in a

local 3 × 3 neighborhood is used to remove noise, enhance

the edges and increase the homogeneity within each region.

Afterwards, the FCM clustering is rerun to achieve a more

robust and accurate segmentation.

Step 4: Segmentation of the fat and skull using the same

FCM algorithm applied to the images with the brain tissue

extracted. Since the skull and the sinus regions are assumed

to have the same electrical conductivity properties, they are

segmented as the same tissue type.

Step 5: Scalp (skin) reconstruction by selecting all pixels

between the edge of the head and fat using a morphological

dilation with a circular structuring element of a radius one.

The final segmentation result of the proposed algorithm is

shown in Fig. 2 applied to the head of a 39 weeks old infant.

At this point, when different compartments of the brain

are obtained, appropriate conductivities have to be attached

to them. As conductivities for the adults do not hold for

the neonates, we turn to literature [13]. The conductivity of

scalp, skull, CSF and brain tissue is chosen to be 0.43 S/m,

0.2 S/m, 1.43 S/m and 0.17 S/m, respectively. The electrode

positions are subsequently localized on the head model using

a standard 10-20 system with 6 extra temporal electrodes (see

Fig. 3).

B. EEG-spike train detection

To detect the spikes in the neonatal EEG, we use our spike

train detection algorithm described in [1]. This detection

algorithm basically consists of three consecutive steps. In a
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Fig. 3. Realistic head model with electrode localizations. Due to low
resolution between slices (0.7mm×0.7mm×4mm), the head has a step-
shaped layout.

first step, high energetic parts of the EEG are segmented

using a Non Linear Energy Operator (NLEO) [14]. This

operator is proportional to the square of both the immediate

frequency and amplitude. Because of these properties, the

NLEO amplifies the high-frequency spikes of the spike train

relative to the background EEG, facilitating the segmenta-

tion.

The second step (see Fig. 4) analyzes the spikiness of the

detected high energetic segments. This spikiness defines that

the spikes need to be ’isolated’ in the EEG by comparing

the energy of the detected segment with its immediate

background activity. The final step is the correlation analysis.

To detect the occurrence of a repetitive pattern of segments, a

correlation scheme was developed that grows a set of highly

correlated segments. If more than 6 correlated segments are

detected, the segments are classified as spikes of a spike train

type seizure. The output of the algorithm is a set of highly

correlated, high energetic spike-like segments corresponding

to the spikes of the neonatal seizure. Finally, all detected

spikes are averaged and the potential distribution over all

channels at the top of the maximum peak is used as input to

the source localization.

C. Source localization

As mentioned in the introduction the dipole source local-

ization problem consists of a forward and inverse problem.

By solving the forward problem, we obtain the electrode

potentials caused by a dipole source. This can be done by

solving Poisson’s equation in the realistic head model:

∇ · (σ(x)V (x)) = Iδ(r − rk) − Iδ(r − rl) (4)

where σ(x) is the location dependent conductivity tensor and

V (x) is the potential distribution inside the head model due

to a dipole with current source and sink at positions rk and

rl.

In spherical head models, equation (4) can be solved using

an analytical expression. In realistic inhomogeneous head

models numerical methods are needed. In this study we use

a finite difference method that can incorporate anisotropic

conductivities [2]. Using the head model with the labeled

Fig. 4. Example of spike train detection: All marked segments (grey-
shaded + delimited by rectangle) are detected by the segmentation step.
After applying the spikiness operator and correlation analysis, only the
shaded segments remain. Only these segments having a high correlation
with previous segments (shaded) are detected as being part of a spike train
type seizure.

voxels, a cubic computational grid is defined to the vertices

at the edges of the voxels. Differentiating (4) in anisotropic

media leads to the following finite difference formulation at

each vertex r0:

I =
8

∑

i=1

AiV (ri) −
(

8
∑

i=1

Ai

)

V (r0) (5)

where V (ri) is the potential at vertex ri neighboring to r0,

Ai is a coefficient that is calculated from the conductivity

tensors from the voxels. I represents the current source and

sink at rk and rl. To each node, we can assign an equation

according to (5). This results in a system of equations with

N unknowns, with N equal to the number of nodes in the

head model: AV = I . In our head model N was equal to

approximately 2500000. To solve the system of equations,

we used successive over-relaxation. Furthermore, reciprocity

was used to speed up the forward calculation in the inverse

problem.

Solving the inverse problem consists of finding the pa-

rameters of the dipole source that best explain the set of

measured potentials consisted of the preprocessed EEG-

spike trains. We find the optimal dipole position ropt and

components dopt for the input potentials Vin at k scalp

electrodes. This is done by minimizing the relative residual

energy (RRE):

RRE =
‖Vin − Vmodel(r, d)‖

2
2

‖Vin‖
2
2

+ C(r) (6)

where Vin are the preprocessed spike trains and Vmodel

are the electrode potentials obtained by solving the forward

problem with a dipole source position r and components d.

‖.‖2 indicates the L2-norm. C(r) is zero for dipole positions

in the brain compartment (cortical shell, white matter shell

and thalamic shell) and is set to a high value elsewhere. This

additional term will restrict the solution of the inverse solver

to the brain compartment. The Nelder-Mead simplex method

is used to find the minimum of the RRE.
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Fig. 5. Dipole representations of a burst localization. Up, middle and
bottom rows show the start, middle and the end of the seizure respectively.
The columns present axial, sagittal and coronal view, while the color bar
shows the RRE.

III. RESULTS

Both the MRI as well as the EEG-data in this study

were recorded at the Sophia Children’s Hospital (Erasmus

Medical Center, Rotterdam, the Netherlands), on a newborn

preterm (born at 39 weeks of gestation) subject to asphyxia.

T1 MRI images were acquired on a Siemens 1,5T MRI

scanner (256×256×20 voxel matrix with a resolution of

0.7mm×0.7mm×4mm). Concerning EEG, a reduced 1-20

set of electrodes (13 electrodes: Fp1,2, C3,4, Cz, F7, 8, T3,

4, T5, 6, O1, 2) was used. The measurement started within

24 hours of birth at a sampling frequency of 256Hz. The

seizures were scored by an experienced clinical neurophysi-

ologist. Before analysis, the data was filtered between 0.3Hz

and 30Hz.

The given data sets are processed using our method. Fig.

5 shows the qualitative results of the source localization of

a burst, i.e. a seizure that begins in one place and spreads

to another. Both the location and orientation of the seizure,

are initialized and shown (as a dipole source). Also, the

relative residual energy (RRE) is represented as the color

of the dipole. The whiter the dipole is represented, the better

the fit is.

Our results show very low RRE-values (< 1%), which

indicates that our models are suitable for the localization of

the EEG activity. Also, there is a clear indication that the

seizure is moving along the cortex from the beginning to

the end of the seizure. When presenting these results to the

expert physician, he scored this seizure behavior as highly

plausible and acceptable. We are aware that a continued

phase of quantitative validation is needed by testing the

algorithm on more patients as well as to other clinical ground

truth data. However, at the time being the latter was not to

our disposal yet.

IV. CONCLUSION

The aim of this study is to show the feasibility to perform

EEG source localization on the newborn brain, based on a

realistic head model. We presented a hybrid segmentation

technique to build this head model combined with two of

our already existing techniques. Although our initial results

are qualitative in nature, we showed that our method have

very low RRE scores, which indicates that our model is a

good model for this type of brain activity.
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