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Abstract— Some models of cellular physiological functions
are formulated as ordinary differential equations that contain
multiple systems of simultaneous nonlinear equations. Simula-
tion of such a model described in a declarative representation
format requires determination of equations to be simultane-
ously solved with specification of independent and parameter
variables in the model. In this report, a method for extracting
systems of simultaneous equations in a cell model is presented.
The present method analyzes a graph representation of a model
and extracts the subgraphs that represent equation systems to
be simultaneously solved, by efficiently interactive selection of
independent variables of the model.

I. INTRODUCTION

Modelling and simulation of cellular functions such as
electrophysiology, ion dynamics, biomechanics, and signal
transduction are important techniques for analysis of the
mechanisms. The cell models are generally formulated as
ordinary differential equations (ODE) to represent transitions
of cell states such as membrane voltage, ion concentrations,
and open probabilities of ion channels. Some of them ad-
ditionally contain a few systems of simultaneous nonlinear
equations to express chemical and mechanical equilibrium,
conservation of mass, and so on. To simulate such a model,
the simultaneous equations should be solved in each step
of ODE calculation. In general, simultaneous solving of an
algebraic equation system requires specification of a con-
sistent set of independent variables and parameter variables,
where an independent variable can independently change the
value to find a solution of the simultaneous equations and a
parameter variable is fixed at a certain value in solving the
simultaneous equations.

To share and exchange cell models, a representation for-
mats, CellML [1] is proposed. CellML can describe the math-
ematical definition of the model formally and declaratively
using MathML. A set of mathematical equations does not
define in itself which variables are independent or parameter
variables. In addition, experimental protocols can change the
set of independent and parameter variables. For an example,
the cell tension is an independent variable and the cell length
is a parameter in isometric contraction experiments, while
vice versa in isotonic experiments. Therefore, simulation of
such a cell model requires, in addition to the declarative
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model definition in CellML, a consistent set of indepenedent
and parameter variables, in order to determine equations to
be simultaneously solved.

In this report, a method for analysis of simultaneous equa-
tions in ODE is presented, in order to allow simulation of
declaratively described cell models that contain simultaneous
equations. In the present method, a model is represented
as a graph and then systems of simultaneous equations are
extracted from a cell model on the graph representation with
efficiently specifying independent and parameter variables
from the model. An existing graph theoretical method for
structural analysis of simultaneous equations, which the
present method utilizes, is fist introduced in section II, and
then the present method is described in section III. An
example of application of the present method to a cell model
is finally reported in section IV.

II. REVIEW OF STRUCTURAL ANALYSIS METHOD

A. Structural Solvability of an Equation System

Iri et al. [2]–[4] proposed a graph theoretical method for
analyzing the structural solvability of a system of simulta-
neous equations. The structural solvability of a system is
defined that the system has a structure which admits a unique
solution for arbitrary values of the parameters. The method
analyzes an equation system in standard form:{

yi = fi(x, u) (i = 1, . . . , M)
uk = gk(x, u) (k = 1, . . . , K)

(1)

where xj (j=1, . . . , N) are independent variables of the sys-
tem, uk (k=1, . . . , K) dependent variables, yi (i=1, . . . , M)
parameters, K , M and N are the sizes of vectors,
and fi (i=1, . . . , M) and gk (k=1, . . . , K) are sufficiently
smooth real-valued functions.

To represent the equation system as a graph, representation
graph was defined. The representation graph of the equation
system (1) is a directed graph G=(V, E), where the vertex
set V = X ∪ Y ∪U (X ={x1, . . . , xN}, U ={u1, . . . , uK},
Y ={y1, . . . , yM} correspond to variables) and the arc set E,
which consists of arcs for each yi from effective arguments
of function fi into the vertex yi and for each uk similarly. A
vertex is called maximal if the in-degree is zero, and minimal
if the out-degree is zero. All vertices in X are maximal and
all vertices in Y are minimal. A Menger-type linking from X
to Y is defined as a set of pairwise vertex-disjoint directed
paths from a vertex in X to a vertex in Y . The size of a
linking is defined as the number of paths from X to Y in
the linking. A linking is perfect if the size is equal to both
|X | and |Y |.

Finally, the following theorem has been proved:
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Theorem 1: An equation system in the standard form (1)
is structurally solvable, if a Menger-type perfect linking from
X to Y exists in the representation graph.

B. Algorithm for Menger-type Maximum Linking

Even and Tarjan reported in [5] that a Menger-type maxi-
mum linking can be found in O(|V | 12 |E|) time by Edmonds-
Karp algorithm [6], [7] for the maximum flow problem. The
method is summarized below.

In order to find a Menger-type maximum linking in a graph
G=(V, E) from a subset X of the vertices to a subset Y ,
construct a network N=(V̄ , Ē, c(e)) as follows, where c(e)
gives the capacity of each arc e of the network:

1) Each vertex v ∈ V is split into two vertices v− and
v+, and then a new arc e connects from v− to v+ and
c(e) = 1.

2) All arcs that formerly led to v now lead to v−, and all
arcs that emanated from v now emanate from v+. For
each arc e of them, c(e) = ∞.

3) Two vertex s and t are introduced for the source and
sink of the network, and then new arcs connect from
s to v−(v ∈ X) and from v+(v ∈ Y ) to t. For each
arc e of them, c(e) = ∞.

In summary, the network N=(V̄ , Ē, c(e)) is defined:

V̄ = {v− : v ∈ V } ∪ {v+ : v ∈ V } ∪ {s, t}
Ē = {(v−, v+) : v ∈ V } ∪ {(u+, w−) : (u, w) ∈ E}

∪ {(s, v−) : v ∈ X} ∪ {(v+, t) : v ∈ Y }
c(e) =

{
1, if e ∈ {(v−, v+) : v ∈ V }
∞, otherwise.

A maximum flow of the network N , which can be found
by Edmonds-Karp algorithm, gives a Menger-type maximum
linking in G from X to Y .

C. Structural Solvability in Numerical Simulation

Iri et al. [2], [4], [8] proposed an analysis method for struc-
tural solvability in numerical simulations also. The method
employs the concepts of system definition and operation
definition. A system definition in standard form is a set of
equations, all of which are given as z = f(u, v, . . . ) and
have distinct left-hand side variables. A system definition in
standard form is expressed using the representation graph.
An operation definition is the assignment of types to subsets
of variables (and corresponding vertices of the representation
graph). A variable is of type S, if the corresponding vertex
is maximal and the value is constant. A variable is of type
G, if the corresponding vertex is minimal and the variable
is required equal to the specified value. If a variable that is
fixed to the prescribed value is neither minimal nor maximal,
the vertex is virtually split into two vertices, one of which is
connected with all the outgoing arcs and labeled as type S,
and the other of which is connected with all the incoming
arcs and labeled as type G. Maximal vertices that are not of
type S are automatically labeled as type A. As a result, the
modified representation graph reveals an equation system in
the standard form (1) by regarding variables of type A as xj ,

variables of type G as yi, variables of type S as constants, and
the remaining variables as uk. Consequently, the structural
solvability can be verified by Theorem 1.

III. ANALYSIS OF SIMULTANEOUS EQUATIONS

In this section, an interactive method for configuring a
cell model that contains simultaneous equations is presented.
A preparation for a model is described first, and then the
algorithm for extraction of simultaneous equations from a
model is defined.

A. Preparation of Model Equations

A minor modification is required for a model to fit the
structural analysis method in section II. Equations of a cell
model may not be defined in standard form; not all the
equations are given as z = f(u, v, . . . ), or multiple equations
have the same left-hand side variables. Such equations can
be turned into the equivalent standard form by following
conversions.

1) If the one side of an equation is an explicit number b:

f(u, v, . . . ) = b,

the equation is converted into standard form by intro-
ducing a new variable β of type G in place of b as

β = f(u, v, . . . ),

where the value of β is required to be b.
2) If the both sides of an equation are not a single

variable, i.e. given as

f(u, . . . ) = g(v, . . . ),

the standard form can be obtained by introducing a
new variable φ of type G to be zero and transposing
the equation as

φ = f(u, . . . ) − g(v, . . . ).

3) If more than one equation exist for the same left-hand
side variable w:{

w = fi(vi) (i = 1, . . . , N) ,

these equations are reformulated by introducing new
variables φi of type G to be zero and transposing w in
all equations except for one:{

φi = fi(vi) − w (i = 1, . . . , N−1)
w = fN (vN ).

B. Algorithm for Extraction of Simultaneous Equations

Model equations to be simultaneously solved during ODE
calculation are undetermined without specification of inde-
pendent and parameter variables in the model. Therefore,
extraction of simultaneous equations from a model requires
definition of the types of the variables.

A simulation of ODE is achieved in general by iteration
of evaluating model equations y′ = F (y, t) with the initial
or assigned values of y, where y is a vector of differential
variables. That is, the value of each differential variable
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is given at each step of ODE calculation. Recall that a
vertex of type S or G is assigned to a variable that has the
predetermined value at solving of the simultaneous equation
system. Therefore, differential variables are of type S or G.

After expression of a model using the representation graph,
extraction of simultaneous equation systems is achieved
with interactively specifying variable types by the following
algorithm:

1) Assign type G to all differential variables and intro-
duced variables in adaptation into standard form.

2) Let the user choose parameter variables from all left-
hand side variables of equations (except variables that
are already assigned types) and assign type G to them.

3) Delete outgoing arcs of type G vertices, and then
recursively delete vertices that become maximal by the
deletion.

4) Delete all vertices that are unreachable to any vertices
of type G.

5) Repeat the following steps until the types of all max-
imal vertices are assigned.

a) Let the user choose a non-constant variable from
maximal vertices and assign type A to it.

b) Assign type S to maximal vertices that can not be
of type A. A maximal vertex can be of type A,
if the size of the Menger-type maximum linking
is equal to the number of vertices of type A in
assuming that the vertex is of type A.

c) Delete vertices of type S and then recursively
delete vertices that become maximal by the dele-
tion.

As the result of this procedure, one or more subgraphs
of the representation graph are extracted, in which all the
maximal vertices are of type A and all the minimal of type
G. The each subgraph represents a system of equations to
be simultaneously solved. For a simulation of the model,
all the variables of type S and G should be given the initial
values, and all the variables of type A require the appropriate
initial values in order to initiate a root-finding algorithm for
simultaneous equations.

An illustration of the present algorithm follows. A sample
model is defined as:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v5 = f5(v1, v2, v3)
v7 = f7(v3)
v6 = f6(v11)
v8 = f8(v3, v4)
v9 = f9(v5)

v10 = f10(v5, v6) (= 0)
v11 = f11(v7)
v12 = f12(v7, v8)

(2)

where v10 is introduced in place of 0. The representation
graph is shown in Fig. 1. Vertex 10 of the representation
graph is assigned type G in step 1. Now assume that v11

(vertex 11) is selected as a parameter variable (type G) in
step 2. Then, vertex 6 is deleted in step 3 and vertex 4,

1 2 3 4

5 6 7 8

9 10 11 12

S A A S

G G

Fig. 1. Example of a Representation Graph

Fig. 2. Representation Graph of Saucerman03 Model

8, 9 and 12 are deleted in step 4, automatically. At this
point, candidate variables for type A is narrowed down to
three variables v1, v2 and v3. If the user choose v2 as an
independent variable in step 5a, then vertex 2 is assigned
type A, and vertex 1 is identified as type S through step 5b
and hence deleted. Finally, the last candidate, v3 (vertex 3) is
chose as an independent variable and assigned type A. The
resulting Menger-type linking is indicated by bold strokes.
Consequently, the system has two systems of simultaneous
equations; one system to be solved for the independent
variable v2 consists of equations on v5 and v10, and the
other for the independent variable v3 of equations on v7 and
v11.

IV. EXAMPLE OF APPLICATION TO A CELL MODEL

The present method was applied to a cell model on β-
adrenergic control by Saucerman et al [9]. In this application,
equations in the original papers were used without any
modification.

The model includes twelve equations that have the left-
side 0. These equations were first transformed into standard
form by introducing variables of type G. The representation
graph of the model in standard form is shown in Fig. 2.
The model has no parameter variables in the left-hand side
except for the introduced variables. Then, after the step
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Fig. 3. Simplified Representation Graph of Saucerman03 Model
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Fig. 4. Extracted Representation Subgraphs of Saucerman03 Model

4 of the present algorithm (sec. III-B), the representation
graph was simplified into the graph shown in Fig. 3. At
that time, 32 variables were picked out as candidates for
independent variables. After choosing [L], [β1AR], [Gs],
[AC], [GsαGTP ], [PDE], [IBMX ], [PKACI ], [PKACII ],
[cAMP ], [Inhib1p], [PP1] as independent variables by
repeating the step 5 of the algorithm, five subgraphs shown
in Fig. 4 were extracted. The each subgraph represents a sys-
tem of simultaneous equations to be solved. Consequently,
the model can be simulated with solving the simultaneous
equations.

V. DISCUSSION

In the example application (sec. IV), the model definition
written in the published paper was used, not that in the
CellML file registered in CellML repository. In the CellML
file, simultaneous equations are altered to an approximate
expression with differential equations so that the equations
can be calculated without solving simultaneous equations.
In other words, the CellML file does not exactly describe
the original model. The alteration could be valid as an input
file for simulators that do not support multiple simultaneous
equations. However, the alteration is inappropriate as a
formal representation of the published model. Moreover,
such alterations may collapse modularity of model compo-
nents. The proposed method enables to simulate a model in
the original expression that contains simultaneous equation
systems. Therefore, a CellML file of a model can be a formal
representation and an executable input file for simulators at
the same time.

A definition of a consistent set of independent and param-
eter variables, which is required for simulation of a model,
should be separately described from a model definition
in CellML, because the set of independent and parameter
variables varies according to experimental protocols. PEPML
[10], which we previously proposed as a representation
format of experimental protocols, is capable of the definition.

The present method can not be applied to models that con-
tain partial differential equations, because partial differential
equations require the boundary condition additionaly. Since
Theorem 1 gives only the necessary condition for the struc-
tural solvability of an equation system, an obtained set of
independent and parameter variables by the present method
may not be consistent, if more than one equation result in
the same relationship, precisely, if the partial derivatives of
equations in the simultaneous system are not algebraically
independent.

VI. CONCLUSION

A method for analyzing simultaneous equations in a cell
model was presented. The present method extracts subgraphs
that represent systems of simultaneous equations from the
representation graph of the model, with efficiently specifying
independent variables. This method allows simulating declar-
ative representations of cell models that contain equations to
be simultaneously solved. This method will enhance usability
of CellML and furthermore facilitate cell modeling and
simulation.
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