
  

  

Abstract— This study presents the development of a 
myoelectric decoding algorithm capable of continuous online 
decoding of finger movements with the intended eventual 
application for use in prostheses for transradial amputees. The 
effectiveness of the algorithm was evaluated through 
controlling a multi-fingered hand in a virtual environment.  
Two intact limbed adult subjects were able to use myoelectric 
signals collected from 8 bipolar electrodes to control four 
fingers in real-time to touch and maintain contact with targets 
appearing at various points in the flexion space of the hand. In 
these tasks, subjects achieved accuracies of 94% when target 
regions extended ± 11.5° about a target angle and 81% when 
the target region extended only ± 5.75° about the target angle.  
The real-time virtual system provides a practical and economic 
way to develop and train algorithms and amputee subjects 
using dexterous prostheses. 

I. INTRODUCTION 
HERE has been an increasing amount of research directed 
toward myoelectric control of individual fingers for 

robotic and prosthetic devices. Control of multi-fingered 
prostheses is of particular importance, especially to 
transradial amputees, as these devices are gradually 
becoming more widely available. From initial investigations 
in using electromyography (EMG) for classifying individual 
finger flexions and extensions [1-3] to continuous regression 
of the position of one or more fingers [4-7], researchers have 
acknowledged the growing need for controlling these 
artificial multi-fingered dexterous hands. 

Much of the past work in myoelectric decoding has been 
performed using offline experimental paradigms [1-4, 8].  In 
other words, subjects were attempting to generate 
myoelectric control signals without any feedback as to 
whether or not the proper movement was being decoded. 
There is some concern whether these decoding algorithms 
developed and benchmarked in offline situations will 
translate well to real-time online control scenarios. Indeed, 
the translation of algorithms developed offline for use in 
online applications is difficult to test. Many of these 
algorithms attempt to decode movements that are beyond the 
performance capability of most widely-available prosthetic 
end effectors.   
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Some researchers have recently demonstrated success 
with real-time control.  Shenoy et al. [9] were able to 
achieve myoelectric control of a 4 degree of freedom robotic 
arm for completing complex tasks. Meanwhile, other 
researchers have resorted to the use of virtual limbs.  
Sebelius et al. [6] have presented some preliminary results 
for regressing finger positions of a virtual model for the 
performance of various movements. Also, Hargrove et al. 
[10] attempted a task-based approach by requiring users to 
use EMG signals to complete a virtual clothespin task. 

In this study, we combined continuous decoding of finger 
position from EMG signals with a virtual prosthetic to 
evaluate controllability in an online setting.  In particular, we 
investigate whether or not intact limbed subjects could exert 
control over individual fingers of this virtual prosthesis in 
target touching tasks that require both active movement as 
well as sustained contractions at various locations in the 
flexion space of the fingers. 

II. METHODS 

A. Data Acquisition 
Two healthy normal limbed adults participated as subjects 

in this experiment. Eight bipolar Ag/AgCl electrodes from 
Myotronics-Noromed (Kent, WA) were placed on the 
subject’s right forearm approximately two inches below the 
elbow.  The electrodes were arranged such that they were 
equally spaced in a ring without particular concern as to 
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Fig. 1.  A subject demonstrates control of the virtual prosthesis 
through use of the CyberGlove while EMG signals are 
simultaneously recorded. 
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aligning them with any muscular or anatomical features. A 
single unipolar Ag/AgCl electrode placed on the olecranon 
served as a reference.  An Immersion (San Jose, CA) 
CyberGlove was also worn by each subject on the same limb 
as the electrodes during the initial portion of the experiment. 

Each pair of myoelectric signals from a given bipolar 
electrode was passed through a differential Otto Bock 
(Duderstadt, Germany) pre-amplifier resulting in eight 
differential EMG signals. These signals were routed through 
a custom-built isolation box and a National Instruments 
(Austin, TX) SCC-68 I/O connector device which was 
interfaced to a National Instruments NI6040E data 
acquisition card connected to personal computer configured 
as an xPC Target for real-time signal processing. 

B. Virtual Model 
The virtual model was constructed within the framework 

of the Virtual Integration Environment (VIE) [11] produced 
at the Johns Hopkins Applied Physics Laboratory. The VIE 
consists of a Simulink model (The Mathworks, Inc. Natick, 
MA) containing blocks representative of the signal inputs, 
data acquisition, signal analysis, physical control and plant 
blocks of the virtual limb. The xPC Target running the VIE 
received the isolated sampled EMG signals as input and 
returned joint angles for desired joints of the virtual limb as 
output. Outputs from the VIE were visualized in 
MusculoSkeletal Modeling Software [12] (MSMS). 

The MSMS was used for presentation of the virtual limb to 
the subject.  The virtual limb was adjusted so that the elbow 
was fixed at a 90 degree flexion and the wrist was fixed in a 
neutral fixed position.  Fingers on the virtual prosthesis were 
capable of 30 degrees of extension and 90 degrees of flexion 
about the metacarpophalangeal (MCP) joint relative to the 
rest position.  The index, middle, and ring fingers as well as 
the thumb were all capable of independent motion about 
their respective MCP joints.  The little finger was tethered to 
match the motion of the ring finger and was incapable of 
independent movement.  Figure 2 illustrates the resting 
position of the virtual hand as well as the perspective 
available to the subject throughout the experiment.  Models 

in the VIE were constructed such that the MSMS limb was 
capable of switching between myoelectric and CyberGlove 
control as needed. 

C. Target Presentation 
A single trial began with the presentation of a Virtual 

Target, represented as a green sphere located on the palmar 
side of the virtual hand. Each target was within reach of only 
one finger at a time and its location was chosen from 1 of 8 
equidistantly spaced positions throughout the range of 
flexion of each finger. The Virtual Target’s location 
corresponded to a particular degree of flexion of a particular 
finger’s MCP joint.  Given 4 fingers capable of independent 
movement and 8 potential locations per finger, shown in 
Figure 3, targets could appear in a total of 32 locations. 

For a given trial, the Virtual Target was assigned a 
threshold around it called the target region. During a trial, if 
the MCP joint angle of the appropriate finger fell within this 
region, the finger was considered to be touching the target.  
Contact was reflected in the virtual environment by 
changing the target from a green sphere to a red cube as can 
be seen in Figure 2. The size of the target region was 

 
Fig. 3. Diagram showing a top down view of a finger of the virtual 
limb with locations of potential targets.  A sample active target is 
highlighted in green.  Corresponding difficult and easy target 
regions are shown shaded in light and dark gray, respectively. 

 
Fig. 2. Screenshots of the virtual model.  On the left, the hand is in a resting position when a green target is presented in the space accessible to 
the ring and little fingers.  On the right, the user has contacted the target, which has changed to a red cube to reflect that it is being contacted 
by the virtual hand. 
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modulated to alter the difficulty of a series of trials.  For this 
study, two difficulties were presented: an ‘easy’ mode in 
which the target region extended ± 11.5° about the target 
angle, and a ‘difficult’ mode in which the target region 
extended ± 5.75° about the target angle. 

Following the target presentation, the subject attempted to 
cause the appropriate finger of the virtual limb to move into 
and remain within the target region.  A trial was considered 
successful if the user maintained the virtual finger’s position 
within the target region continuously for 750 milliseconds.  
The subject was given up to 15 seconds to attempt to 
successfully complete a trial at a given target location. 

D. Experimental Protocol 
Subjects initially participated in a training session in which 

they used the CyberGlove to control the virtual hand while 
EMG signals were recorded from the same arm. During this 
session, targets were presented at four locations for each 
finger with each target position being repeated five times. 
This session generated a set of training data as well as 
established a control trial block for comparison against later 
trials in which subjects exhibited myoelectric control.   

Following the initial training session, the signal processing 
block of the VIE was updated for myoelectric control. 
Subjects participated in four additional trial blocks in which 
they controlled the virtual hand using myoelectric signals. In 
each trial block, as in the training session, the subject was 
presented with targets appearing at four locations for each 
finger with five repetitions each for a total of 80 trials per 
trial block. The first two of these blocks were performed in 
‘easy’ mode and the latter two blocks were performed in the 
‘difficult’ mode.  All Virtual Target positions were utilized 
equally throughout these trial blocks. 

E. Signal Processing 
The amplified differential EMG signals were sampled at 

1000 Hz and band passed between 5 and 500 Hz. These 
signals were windowed using a sliding rectangular window 
with a 200 ms width and 25 ms slide size. The waveform 
length and mean absolute value of each channel were 
extracted from each window and passed as input to an 
artificial neural network with a single hidden layer of tan-
sigmoidal neurons and an output layer of linear neurons. The 
network was trained on CyberGlove and EMG data collected 
during the control trial. The artificial neural network’s 
output represented the intended joint angle of each of the 4 
joints and was smoothed with a 6 point running average. 

Smoothed outputs from the trained neural network 
represented the intended MCP joint angle for each finger of 
the virtual prosthetic limb.  These outputs were then used as 
input for the control and plant blocks of the VIE model.  The 
output from these blocks represented the actual finger angles 
of the virtual limb, which were used for comparison against 
the target region at each instant during a trial and formed the 
basis for determination of whether or not contact was being 
made with the Virtual Target.  

III. RESULTS 
Initial data were quantified and summarized based on the 

subject’s ability to successfully complete a particular trial as 
well as the time to completion. These results were collected 
for both myoelectrically controlled trial blocks as well as the 
initial trial block controlled by the CyberGlove.  Tables I 
and II summarize the overall success rate for each finger and 
each difficulty in terms of trial completion time as well as 
accuracy in terms of successfully completed trials. 

 
TABLE I 

MEAN TIME TO TRIAL COMPLETION (SECONDS) 

 Control Easy Difficult 

Overall 2.095 ± 0.700 2.945 ± 2.322  4.302 ± 3.217 

Index 2.095 ± 0.712 3.587 ± 2.647 5.496 ± 3.841 

Middle 2.114 ± 0.758 2.135 ± 1.163 3.609 ± 2.582 

Ring/Little 2.276 ± 0.590 2.218 ± 1.188 4.131 ± 2.962 

Thumb 1.895 ± 0.701 3.976 ± 3.149 4.242 ± 3.349 

 
 

TABLE II 
MEAN ACCURACY BASED ON TRIAL DIFFICULTY 

 Control Easy Difficult 

Overall 100% 94.06% 81.56% 

Index 100% 88.75% 71.25% 

Middle 100% 100% 95% 

Ring/Little 100% 96.25% 87.50% 

Thumb 100% 91.25% 72.50% 

 
The mean time to completion of successful trials across all 
three variables of difficulty level, the Virtual Target location 
and active finger is displayed in Figure 4. 

IV. DISCUSSION 
As reflected in Tables I and II, subjects were able to 

control the virtual hand to contact Virtual Targets located at 
a majority of locations with overall accuracies of 94.06% 
when the target region extended ± 11.5° about the target 
angle. When this region was decreased to ± 5.75° subjects 
still achieved 81.56% accuracy.  Performance times 
approach those achieved in the control trial block with 
successful trials taking less than 5 seconds each across all 
difficulty levels.  

Since the threshold during these trials represented almost 
a quarter of the range of flexion of the fingers, subjects 
occasionally completed trials by pure chance that the correct 
finger was already within the target range when the target 
was presented. This was most noticeable for targets 
appearing in locations nearest the hand’s resting position. 
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As Figure 4 illustrates, targets further away from the 
resting position were generally harder to hit, particularly for 
the thumb and index finger. This is likely due to the location 
of these targets being mapped to the extreme upper end of 
the dynamic range of the subject’s EMG signals. Succeeding 
on trials in which the target appeared in positions 7 or 8, 
which are most distal from the resting position, required the 
subject to exert and sustain a near-maximal contraction for 
the appropriate fingers, which proved difficult.  

There were two principle causes for missed trials: 
difficulty reaching targets at the maximal end of the range of 
flexion and small oscillations in the virtual fingers causing 
difficulties sustaining a particular angle of flexion.  Subjects 
typically exhibited having a better degree of control at 
positions nearer to rest, indicating that achieving and 
maintaining near-maximal muscular contractions may be an 
issue to consider in the future.  One solution may be to train 
the neural network so that the virtual fingers saturate at full 
flexion before maximal muscle contraction is reached.  This 
will ideally make the fingers of the virtual prosthesis easier 
to control throughout their entire range of motion. 

Ultimately, the results are a positive indicator of the 
likelihood of being able to construct functional and intuitive 
control schemes for myoelectric control of individual 
fingers. Further investigations involving transradial 
amputees will be necessary to evaluate the true effectiveness 
of these algorithms. 

V. CONCLUSION 
We have presented results that show able-limbed subjects 

can successfully exert fine motor control over a virtual hand 
model.  Though these results are promising, further 
investigation is warranted to examine the performance by 
amputees. In addition, there is much to learn about the 
manner in which a person learns to control this virtual 
device and the change in performance across multiple trials. 
For now, the experimental setup provides a quick and 
efficient manner of testing various myoelectric control 
schemes in objective-based tasks. Of additional importance 
is the flexibility of the model to be expanded to other online 
setups, paving the way for rapid development and online 
testing of a myriad of myoelectric control schemes.  
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Fig. 4.  The average time to completion of successful trials based on finger, difficulty mode and target position.  Targets are numbered 
based on their relative proximity to the resting position of the hand.  The relative difficulty of control of each finger can also be seen from 
larger mean completion times for the thumb and index finger. 
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