
  

  

Abstract— Different dose-matched, upper extremity 
rehabilitation training techniques, including robotic and non-
robotic techniques, can result in similar improvement in 
movement ability after stroke, suggesting they may elicit a 
common drive for recovery. Here we report experimental 
results that support the hypothesis of a common drive, and 
develop a computational model of a putative neural mechanism 
for the common drive. We compared weekly motor control 
recovery during robotic and unassisted movement training 
techniques after chronic stroke (n = 27), as assessed with 
quantitative measures of strength, speed, and coordination.  
The results showed that recovery in both groups followed an 
exponential time course with a time constant of about 4-5 
weeks.  Despite the greater range and speed of movement 
practiced by the robot group, motor recovery was very similar 
between the groups. The premise of the computational model is 
that improvements in motor control are caused by 
improvements in the ability to activate spared portions of the 
damaged corticospinal system, as learned by a biologically 
plausible search algorithm. Robot-assisted and unassisted 
training would in theory equally drive this search process.   

I. INTRODUCTION 
common finding in upper extremity stroke 
rehabilitation research is that disparate but intensity-

matched movement training techniques elicit similar 
improvements in movement ability following stroke [1-3]. A 
simple explanation is that different training techniques elicit 
a common neural drive for plasticity. However, what this 
common drive might be is not well understood or modeled.   

Interpretation of the finding of comparable recovery with 
disparate training techniques is difficult because most 
previous clinical studies have used coarse clinical outcome 
measures that were assessed only a few times per patient.  A 
patient could improve his or her score on a coarse outcome 
measure by changing movement control processes in several 
different ways with several different time courses.  
Quantitative details of motor control assessed frequently are 
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needed to distinguish detailed patterns of recovery. 
The experimental study reported here addressed these 

issues by comparing two movement training techniques – 
robot-assisted and non-assisted arm movement training – 
using quantitative measures taken at weekly intervals. The 
two techniques were dose-matched, but the robot-assisted 
participants practiced substantially different movements, in 
terms of range of motion (ROM) and speed, because of the 
robot assistance.  

We found that the patterns of recovery assessed with the 
quantitative measures were strongly correlated between the 
training techniques. To explain this result, we propose a 
neuro-computational model of practice-dependent 
movement plasticity. The premise of this model is that 
improvements in motor function are caused by 
improvements in the ability to activate spared portions of the 
corticospinal system, which are in turn driven by trial-and-
error practice and a scalar teaching signal resulting from 
each movement.  

II. EXPERIMENTAL METHODS 

A. Subjects 
 27 adult stroke survivors were recruited through local 

hospitals and stroke support groups in Orange County, CA.  
All participants had experienced a single ischemic or 
hemorrhagic stroke and were at least three months post 
stroke prior to their enrollment into the program (mean = 67 
months). All participants demonstrated moderate to severe 
weakness of their affected upper extremities defined by the 
Fugl-Meyer Motor Scale (robot group, n=13, mean = 25 out 
of 66, range 10 to 39; control group, n=14, mean = 23 out of 
66, range 12 to 33).  Exclusion criteria included significant 
pain, instability or subluxation of the affected shoulder, 
severe elbow or wrist contractures, concurrent severe 
medical problems, cognitive dysfunction, visual deficits, 
severe neglect or apraxia, and current enrollment in ongoing 
upper extremity therapy. All subjects provided written 
consent. The study was approved by the IRB of UCI.   

B. Device: Pneu-Wrex 
 The robotic device used (“Pneu-Wrex” [4-6]) is a four 

degree-of-freedom robot. It is based on a passive arm 
support called WREX [7], allows a wide range of motion of 
the arm in a 3D space, and incorporates pneumatic actuators 
to generate active forces. It uses an adaptive controller that 
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learns the dynamics of the patient’s arm, ability and effort at 
the same time, using an adaptive sliding controller with the 
novel addition of a forgetting term (see [4] for detailed 
description). With this controller, the device provides 
compliant assistance-as-needed that allows the patient to 
actively participate in and complete virtual tasks. Hand 
movement training through grasp and release is incorporated 
through a grip sensor. Position sensors located on the joints 
along the Pneu-Wrex exoskeleton allow it to be used as an 
input device to play computer games that are functionally 
oriented. Games in this study included grocery shopping, 
cleaning a window, playing basketball, and driving a car, 
and included auditory and visual feedback.    

C. Assignment and Intervention 
 We compared the arm movement of subjects who 

participated in Pneu-Wrex training with control subjects 
who exercised for the same duration without the device and 
received similar amounts of supervision from a therapist.  
All subjects participated in 24 one-hour, therapist-
supervised treatment sessions, approximately three times per 
week for eight to nine weeks.  Subjects were randomly 
assigned to the Pneu-Wrex or control group using a block 
allocation method.  Subjects assigned to the control group 
participated in conventional table-top exercises developed at 
the Rehabilitation Institute of Chicago [8]. These exercises 
included bimanual ROM stretches, active ROM exercises 
with tabletop support, and a list of ADL tasks.       

D.  Assessment Procedures 
In this paper, we focus on the weekly quantitative 

assessments performed on participants in both groups with 
their arms in the robotic device, although other clinical 
assessments were also taken. These assessments included a 
measure of the strength of the subject’s shoulder flexion and 
elbow extension. The endpoint of the robot was attached to a 
spring scale, and subjects raised their arm against the spring, 
or extended their arm outward from their body against the 
spring. Readings from the spring gauge were recorded. The 
speed assessment measured how fast subjects were able to 
move their affected arm first in an upward direction then in a 
horizontal direction away from their body. The coordination 
assessment measured the time to complete the basketball and 
window washing robotic training games. The basketball 
game required that the participant grab a ball represented on 
the computer screen, lift the ball, and dunk it in a hoop.  The 
window washing game required sweeping the arm across a 
virtual window in the frontal plane to clean it.   

III. RESULTS 
For both the robot-trained and table-top trained groups, 

the weekly measures of movement ability improved 
significantly and exponentially over the ten week period, 
with a time constant of about 4-5 weeks (Figures 1 and 2). 
The recovery dynamics were highly correlated between the 
two groups for all outcome measures; when the recovery 

curves were regressed against each other, r2 ranged from 
0.67 to 0.91, p < 0.005.  

 
Figure 1. Change in shoulder flexion and elbow extension strength and 
speed over 10 weeks of robot-assisted (x) or conventional table-top (o) 
training.  The bars show the standard error of the mean. All changes are 
significant comparing first to last week (p < 0.05). 
 

 
Figure 2: Left: Time to complete the basketball and window washing games 
for the robot (solid line) and control (dashed line) groups. Right: Amount of 
robot assistance in the vertical direction during game play for each game.  
Significant changes from start to end at p < 0.05 are labeled. 

IV. DISCUSSION OF EXPERIMENTAL RESULTS  
The robot and control training techniques differed in at 

least three key ways. First, the participants who received 
assistance from the robotic exoskeleton were able to move 
their arms through a much wider range of movement with 
higher movement speeds because of the robotic assistance, 
as we have shown previously [4]. Second, they received a 
graded amount of assistance based on their movement 
ability, via the use of an adaptive assistance algorithm, also 
shown previously [4], compared to the fixed assistance level 
provided by the table for the control group. Third, they 
received quantitative feedback about their movements on the 
computer screen, while the control group merely had visual 
feedback regarding their arms. Yet the robot and control 
groups recovered with strikingly similar temporal dynamics. 
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A simple interpretation of this finding is that the action of 
trying to move accounted for the practice-dependent arm 
movement recovery, independently of the specific ROM 
achieved or the level of assistance.  In this interpretation, it 
is then the action of trying to move that automatically and 
inherently elicited the teaching signal required for the neural 
reorganization supporting the movement recovery, 
independently of the quantitative task feedback. In the next 
section, we develop a computational model of use-
dependent brain organization based on this interpretation. 

V. NEURO-COMPUTATIONAL MODEL 

A. Overview of the Stochastic Local Search Model 
The model focuses on strokes that partially destroy the 

corticospinal system, either by damaging cortical motor 
areas of white matter projections to the motor neuron pools 
from cortical motor areas. We assume that motor control 
gains are caused by improvements in the ability to activate 
the spared portions of the corticospinal tract that activate 
motor neuron pools. We further assume that the motor 
system learns how to better activate spared corticospinal 
tracts by searching for optimal activation patterns using a 
stochastic local search process [9-12]. The teaching signal 
that guides this search is a scalar measure of the movement 
success caused by the current activation pattern, relative to 
the most successful, previously-tried activation pattern.  

B. Model Details  
The model assumes that the force a muscle generates is 

determined by the weighted, summed activity of 
corticospinal (CS) cells that drive the arm muscle motor 
neurons pool (Fig. 3), where CS activity is defined by a 
vector of mean firing rates. In the simulations reported here, 
we modeled connectivity based on cortico-motoneuronal 
and other last-order pre-motor neurons, which have been 
well characterized using spike-triggered averaging 
techniques in primates [13-17].  These connections are 
primarily focal and excitatory. Changing the percentage of 
reciprocal or inhibitory connections did not alter the model 
findings. 

 We assumed that increases in the firing rate of a single 
CS cell caused proportional increases in muscle force [13, 
18, 19], up to a saturation limit, with the proportionality 
constant determined by a fixed, connection weight. We 
experimented with versions of the model in which the 
saturation limits for each cell were drawn from different 
random distributions; the results from such models did not 
differ from a model in which the saturation limits were all 
set at the same constant, so, for simplicity, we present only a 
model in which the saturation limit of all excitatory cells 
was set to 1 and inhibitory cells to -1.    

We studied two stochastic local search algorithms that 
have been previously proposed as biologically plausible: a 
best-first stochastic search [9] and a stochastic gradient 
descent algorithm [11]. For the simulations reported here, 

we assumed the teaching signal was related to the peak force 
generated by an activation attempt.  Specifically, the motor 
system searched for activation patterns that produced more 
force in a desired direction (flexion or extension). Thus, for 
the best-first search, given an initial activation pattern X0 
that was measured to have produced a force F0 for the target 
motor function, the motor system tries a new pattern Xi = X0 
+ Ni , where Ni is random noise, and then measures the 
movement success (i.e. force) Fi produced by this pattern. 
Here, the noise is assumed to arise from independent 
stochastic processes operating on single neurons, and is 
drawn from a zero-mean normal distribution with standard 
deviation σ, although other noise distributions (e.g. signal 
dependent) are possible.  Then, plasticity occurs if Fi > F0, in 
which case X0 = Xi and F0 = Fi.  That is, the motor system 
memorizes the new pattern Xi if the force Fi it produces is 
greater than the force F0 of the best previously tried 
movement. The memorization of the new pattern Xi is 
assumed to occur by trigger of a neuromodulatory signal 
that controls synaptic weights wi between a command signal 
Ui and the corticospinal cell activation vector Xi (Fig. 3). 

 
Figure 3.  Stochastic search model of motor control recovery.  A. The model 
focuses on how the brain learns to adjust the activations xi of N residual 
corticospinal (CS) cells in response to a motor command uf to create a drive 
Sf to motor neuron pools and create a force F.   

VI. MODEL RESULTS 
The stochastic local search mechanism optimized the 

activities of the simulated CS network, increasing the force 
output of the simulated arm with movement practice (Fig. 
4).  The search mechanism causes an exponential-like force 
recovery curve, with a slow increase late in practice rather 
than an asymptote, similar to the experimentally measured 
strength, speed, and coordination recovery curves (cf. Fig.4 
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with Figs. 1 and 2).  The range and speed of the practiced 
movements do not alter the rate of recovery; all that matters 
is the magnitude of the teaching signal (in this case peak 
force) achieved by the current pattern of activation. 

 
Figure 4. Strength recovery and activation optimization by stochastic 
search. Left: Example force recovery curves using best-first search (black 
line) and stochastic gradient descent (green). The decreasing curves show 
the antagonist force, which equals the amount of co-contraction. The 
network had 500 agonist-facilitating and 500 antagonist-facilitating CS 
cells, the peak force possible from an individual unit was 1.0, and the noise 
was zero-mean Gaussian with σ = 0.02. The learning gain g for stochastic 
gradient descent was 0.8. The maximum force possible from the CS network 
was 500 (dotted line). Middle:  Initial cell activity was randomized with a 
uniform distribution from 0 to 1. Right: Cell activity after 20,000 movement 
attempts. The agonist-facilitating cells’ activity increased. 

VII. DISCUSSION 
The experimental evidence reported here suggests that 

practicing movements with or without robotic assistance 
produces a similar time-course and magnitude of motor 
recovery after chronic stroke. A simple interpretation of this 
finding is that the action of trying to move, along with a 
scalar teaching signal about movement success, drives 
practice-dependent arm movement recovery, independently 
of the level of assistance. We presented a model of motor 
plasticity consistent with this interpretation, in which the 
brain searches for better ways to activate motor neuron 
pools by trying new patterns that are slightly and randomly 
perturbed from previous patterns. Such a model predicts 
exponential-like recovery driven by practice regardless of 
range or speed of the practiced movement. In other words, 
the amount of robot assistance does not alter recovery. 

Additional simulations with this model indicate that it is 
competent to make other predictions consistent with clinical 
and physiological data, including that: 

• Early strength will predict late strength recovery 
• The ultimate strength attainable will be proportional 

to the number of spared corticospinal fibers 
• There will exist a residual capacity for further 

strength increases with further practice  
• The differential effect of a dose of movement practice 

will be greater earlier in recovery  
• Force-related brain activation will increase in 

secondary motor areas following stroke, where a 
secondary motor area is defined as one with weaker 
drive to motor neuron pools 

The model also makes interesting novel predictions: 
• Temporarily inhibiting subpopulations of more 

powerfully connected corticospinal neurons will 
allow the motor system to optimize descending 
systems with a weaker influence.  

• Randomly varying the dynamic environment 

experienced during training will slow learning by 
making it impossible for the motor system to 
effectively compare the results of the current motor 
pattern with previous “best” patterns.  

Future work will test these predictions. 
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