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Abstract— In this work, we propose an effective application
layer solution for packet loss mitigation in the context of
Body Sensor Networks (BSN) and healthcare telemetry. Packet
losses occur due to many reasons including excessive path loss,
interference from other wireless systems, handoffs, congestion,
system loading, etc. A call for action is in order, as packet
losses can have extremely adverse impact on many healthcare
applications relying on BAN and WAN technologies. Our
approach for packet loss mitigation is based on Compressed
Sensing (CS), an emerging signal processing concept, wherein
significantly fewer sensor measurements than that suggested
by Shannon/Nyquist sampling theorem can be used to recover
signals with arbitrarily fine resolution. We present simulation
results demonstrating graceful degradation of performance with
increasing packet loss rate. We also compare the proposed
approach with retransmissions. The CS based packet loss
mitigation approach was found to maintain up to 99% beat-
detection accuracy at packet loss rates of 20%, with a constant
latency of less than 2.5 seconds.

I. INTRODUCTION

An important aspect for biomedical telemetry in healthcare

applications is to provide an end-to-end reliable communica-

tion link, while minimizing sensor power and communication

latency. The Harvard CodeBlue project [1] reports that up to

50% packet loss rates were observed in a recent trial in-

volving a multi-hop network. In [2], the authors investigated

interference of 802.11 traffic presented to ZigBee nodes in

BSN. Their experiments showed 33%−56% packet loss rate,

depending upon the network setup. It is possible to improve

the packet loss performance with Quality of Service (QoS)

aware networks. One effort to provide QoS in 802.x lower

layers [3] argues that traffic pattern based scheduling does

not work well for telemedicine applications. They study a

dual-channel approach where one channel is reserved for

emergency alert messages. In their simulations, they observe

packet loss rates of 5 to 25%. Another study found that

packet loss rate increases with network congestion, and

proposed the use of DiffServ for QoS provisioning [4].

Some authors have also explored the use of Forward Error

Correction (FEC) coding in BAN scenarios [5], [6]. Using

FEC schemes the authors in [5] observed a residual 3.4%
packet loss rate for 2 second latency. In [6], the authors

investigated ECG over a GPRS link and were able to achieve

0.1 to 0.3% loss rate for a 3 second latency. It is evident that

there is a need for more reliable link, with lower delay and

lower power consumption.

Our approach for packet loss mitigation is based on the

compressed sensing (CS) paradigm. CS is an emerging signal
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processing concept, wherein significantly fewer sensor mea-

surements than that suggested by Shannon/Nyquist sampling

theorem can be used to recover signals with arbitrarily fine

resolution [7], [8], [9]. The measurements in CS framework

are generally defined as inner-products of the signal with

random basis functions. CS relies on the assumption that

the signal of interest is sparse in some basis representation

with only M non zero elements, where M ≪ N and N is

the signal dimensionality. These signals can be recovered

faithfully if an order of M · log N samples are available

at the receiver, albeit with some additional computational

complexity at the receiver. In the context of BAN, this is

desirable as we shift computational complexity to nodes with

flexible power budgets and increase life of the sensor. In

[10], [11], we described an application of CS for reducing

the sensor power for pulse oximeters. An interesting aspect

of CS is that it lends itself conveniently for packet loss

mitigation, as receivers are equipped to reconstruct signals

in some sparse domain. The receiver operation is one and

the same whether measurements are omitted at the sender

or dropped by the communication channel. In this work, we

exploit these capabilities of a CS based receiver for packet

loss mitigation in healthcare applications.

The remainder of the paper is organized as follows. In

Section 2, we review the CS operations for acquisition at sen-

sor and reconstruction at receiver. In Section 3, we describe

the CS based approach for packet loss concealment (CS-

PLC). In Section 4, we present experimental results based

on ECG signals from the MIMIC database for the proposed

scheme and comparisons with traditional approaches such as

retransmissions. We present conclusions in Section 5.

II. CS FRAMEWORK

In this work, we are interested in exploiting the CS

paradigm for packet loss mitigation. We focus on ECG signal

telemetry here, and note that the methodologies described

are applicable to other biomedical signals. Consider a short

term segment of an ECG signal, denoted by N−dimensional

vector x and fs is the sampling frequency of x. In order to

exploit sparsity we make use of a Gabor basis, consisting of

various cosine waves with time support limited by Gaussian

window functions at different scales. Let the sparse-domain

transform basis be represented by N×N matrix W. The

(i, j) entry of matrix W is given by,

[W]i,j = cos

(

2π(i − 1)(j − 1)

2N

)

× exp

(

− (i − 1)2(j − N/2)2

wN2

)

. (1)
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The term w is associated with the width of the Gaussian

kernel in the Gabor basis. We normalize each row of the

matrix W such that the corresponding L2-norm is equal to 1,

and we will refer to W as the sparse-basis. The ECG signal x

is projected on the sparse-basis to generate the corresponding

N−dimensional representation in transform space and it is

given by

y = Wx. (2)

The recently developed CS framework by Candes and

Donoho states that if x is explicitly-sparse with only M non-

zero elements in the transform space then K ≥ M log N/M
random measurements (i.e. projections of x on a K×N
random basis) provides sufficient information, with high

probability, to enable signal reconstruction with zero error

[7], [8]. In real situations the signal is never truly sparse

and has some information content throughout the transform-

space; however the number of significant components with

magnitude greater than ǫ, where ǫ ≪ max(y), is much

smaller than N . The extensions of Candes’s result to the

case where x is not explicitly-sparse has been presented

in [8]. The CS paradigm still remains valid; however, the

reconstruction error does not go to zero. Note that in the

CS framework, the measurement matrix is chosen such

that it is statistically incoherent with the sparse basis (i.e.,

independent of signal prior). Typically it is defined as a

matrix containing random i.i.d elements (which may be

normally distributed as an example).

We now express mathematically the sensing process for

x. The first step is to create a measurement matrix H

of dimension K×N , whose elements are independently

chosen from the symmetric Bernoulli distribution Pr(Hi,j =
−1 or 1) = 1

2 . The next step is to transform the original

signal x using the measurement matrix H. The resulting

K−dimensional measurement vector r is given by

r = Hx. (3)

The CS reconstruction framework makes use of the sig-

nal prior (i.e., sparsity) and the measurement vector r to

estimate the signal x. In this work we make use of the

matching pursuit (MP) algorithm for signal reconstruction

from measurement vector r. The MP technique is a greedy

algorithm that builds up a signal approximation iteratively by

making locally optimal decisions [12], [13]. Each iteration of

the MP algorithm costs on the order of O(KN) arithmetic

operations. More details about this technique can be found

in [13].

III. CS BASED PACKET-LOSS CONCEALMENT

In this section, we address the issue of end-to-end packet

losses due excessive path loss, interference from other wire-

less systems, handoffs, congestion, system loading, etc. We

observe that when the signal being transmitted has redun-

dancies, we can treat the packet-losses as lossy compression

performed by the channel. We assume that we can identify

lost packets at the application layer, e.g. via a Sequence
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Fig. 1. Sample ECG signal with N = 300 (top), Transform of the signal
in Gabor space (middle), and Precoded version of the signal (bottom)

Number field in the headers in lower layers of the protocol

stack.

At the sender, we perform a precoding operation on sensor

data by using the random measurement matrix H. This

operation spreads information across multiple packets and

enables us to reconstruct the information in lost packets from

received packets.

The K−dimensional measurement vector r (i.e., Hx) is

referred to as the precoded version of x. We packetize r

into n packets, each with P samples for transmission. Now

if the communication channel were to drop some packets, we

can make use of the underlying transform-domain sparsity of

the signal, and still be able to reconstruct the signal from the

correctly received precoded data. Note that the reconstruction

fidelity will depend upon the packet loss rate and the signal

sparsity structure. Here, we set K equal to N . As the sender

requires N samples per transmission, it will introduce a

constant latency of N
fs

seconds.

We now consider reconstruction of x̂ at the receiver. Let

Hc, a diagonal matrix of dimension K×K represent the

channel and S be the set containing indices of lost packets.

The cardinality of the set S represents the number of packets

dropped. The elements in the diagonal of Hc are defined as

follows.

[Hc]i,i =

{

0 if ⌈ i
P
⌉ ∈ S

1 otherwise
(4)

The pre-multiplication of Hc with r will essentially provide

us the precoded data samples that were successfully received.

We denote the resulting vector as r̂ and it is given by HcHx.

The MP algorithm from [13] is used to generate the signal

estimate x̂ from received data r̂. Note that the term H in

the MP algorithm needs to be replaced by HcH in this case.

The Gabor basis (W) from eq. (1) is used to enforce sparsity

during the CS reconstruction. Figs. 1(a) and 1(b) illustrate
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n = 15 packets; N = 300, P = 20 samples/packet

 

 

Original signal

1−transmit (No concealment)

CS−PLC

4 packets
lost in this
particular
example

Fig. 2. Signal reconstruction example using CS-PLC and 1-transmit (with
no concealment).

an example with a short segment of ECG signal (x) and

the corresponding representation y (i.e., Wx) in transform

space respectively. Fig. 1(c) shows the precoded version of

x given by r = Hx.

Fig. 2 provides an illustration of the CS-PLC reconstruc-

tion described above. The solid curves in blue and red

represent the original and reconstructed signals respectively.

The dashed curve in black represents k−transmit, where

k = 1 (i.e., single transmission) with zeros substituted for

lost packets. In this example, two ECG peaks were lost due

to packet losses and the CS-PLC was able to estimate ECG

signal peaks with high fidelity.

We also tried an alternative scheme, wherein the precoding

is done for every P ECG samples instead of n·P samples.

This is followed by sample level interleaving of the precoded

data across the length of n·P samples. We refer to this as

CS-PLC-I. Although we precode the original ECG data over

shorter durations as compared to CS-PLC, the interleaving

step allows to spread the signal information across a longer

duration. CS-PLC-I further reduces the complexity at the

sender and increases its longevity. We also compare pro-

posed approaches with “retransmissions”. Retransmissions

has smaller bandwidth penalty compared with FEC, but

considerable complexity at the sensor as packets will have

to be buffered at the sender. There is also a latency penalty

that is proportional to the round trip time (RTT).

IV. RESULTS

In this section, we present quantitative results of the

proposed approach for various packet loss conditions. The

performance of the PLC schemes are first evaluated in terms

of normalized RMSE which is defined as

√
E[‖x−x̂‖2]

max{|x|} . The

term E[·] denotes the expectation operator with Monte Carlo

averaging over various realizations of ECG signals (x) and

different channel realizations (Hc). All the comparisons

presented in this paper are averaged over 20000 monte-carlo

channel realizations. The ECG signals in this study are taken
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Fig. 3. RMSE comparisons of CS-PLC scheme for n = 5, 10 and
15 packets (which correspond to latencies of 0.8, 1.6 and 2.4 seconds
respectively).
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Fig. 4. Comparisons for various PLC schemes in terms of normalized
RMSE.

from the MIMIC database [14] discussed earlier and the

sampling rate is fs = 125Hz. Fig. 3 compares the normalized

RMSE performance of CS-PLC for different values of n.

The value of P is set to 20 samples (per packet) for all the

comparisons in the remainder of the paper. The values of

n considered in this comparison 5, 10 and 20 correspond to

latencies of 0.8, 1.6 and 2.4 seconds respectively. We observe

from fig. 3 that normalized RMSE increases with increasing

packet loss rate. This is expected because higher packet loss

rates imply reduced amount of reliable data available at the

receiver for estimating x̂. Also note that normalized RMSE

performance improves with increasing number of packets

(n). With higher n we can enforce sparsity over a longer

ECG signal duration and thus improve the reconstruction

fidelity.

We now compare CS-PLC, CS-PLC-I and retransmissions
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Fig. 5. Heart beat detection performance comparisons for various PLC
schemes.

approach in fig. 4. The red curves with “circle” and “square”

markers represent the CS-PLC and CS-PLC-I schemes re-

spectively. The value of n is set to 15 packets for the

comparisons. Note that the reconstruction fidelity obtained

using CS-PLC-I is comparable to the CS-PLC method. The

dashed curve in fig. 4 represents the 1−transmit scheme.

Note that at moderate packet loss rate of 1%, 1-transmit

method performs 5 times worse, in terms of RMSE, com-

pared with CS-PLC scheme. Next, we employ sample level

interleaving (as explained before) in the 1-transmit scheme

and quantify the associated RMSE improvement. We observe

that with interleaving 1-transmit method performs only 3

times worse as compared to CS-PLC for packet loss rate of

1%. The dashed curves with different markers depict RMSE

performance for different values of k in the k−transmit

approach with no interleaving. Note that with two and three

retransmissions we do achieve significant improvement in

reconstruction RMSE, however this comes at the cost of

increased transmission bandwidth, end-to-end system latency

and higher protocol complexity at the sensor.

Next, we compare all the PLC schemes presented above

with respect to heart beat detection accuracy. This quantity

is defined as the rate of correctly identifying the QRS peaks

in the ECG signal. The value of 100% indicates perfect

beat detection whereas the value of 0% indicates no beat

detection. According to the AAMI standards in [15] the beat

is correctly detected if it lies within 150 ms of the annotated

beat index available beforehand from the database. The de-

tails about the monte-carlo simulations are same as in fig. 4.

We make several observations from this data. First that heart

beat detection rate degrades with increasing packet loss rate

as expected. With single transmission (and no interleaving)

the detection accuracy obtained at packet loss rate of 50%
is equal to 55%. Second the performance improves for the

k−transmit schemes with increasing k. Third observation is

that the proposed CS based PLC schemes perform superior

than 3−transmit method even at very high packet loss rates.

Note that at packet loss rate of 50%, CS-PLC-I achieves 96%
detection accuracy as opposed to the 3−transmit method

which achieves 87% detection accuracy only.

V. CONCLUSIONS

Packet losses can have extremely adverse impact on many

healthcare applications relying on BAN and WAN technolo-

gies We present CS based packet loss concealment solution

from an end-to-end application perspective. Our approach

has lower transmission overhead compared with FEC. It

is also a simpler scheme compared to retransmissions and

has a constant latency. We show that the reconstruction

accuracy degrades gracefully as packet loss rate increases.

We demonstrated that ECG signals can be recovered with

high fideliety, even in the presence high packet loss rate

conditions. Our simulations based on the ECG data from

MIMIC demonstrate that up to 99% beat-detection accuracy

at packet loss rates of 20%, with a constant latency of less

than 2.5 seconds.
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