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Abstract— Electroencephalographic signals are known to be
non-stationary and easily affected by artifacts, therefore their
analysis requires methods that can deal with noise. In this
work we present two ways of calculating robust common
spatial patterns under a maxmin approach. The worst-case
objective function is optimized within prefixed sets of the
covariance matrices that are defined either very simply as
identity matrices or in a data driven way using PCA. We test
common spatial filters derived with these two approaches with
real world brain-computer interface (BCI) data sets in which
we expect substantial “day-to-day” fluctuations (session transfer
problem). We compare our results with the classical common
spatial filters and show that both can improve the performance
of the latter.

I. INTRODUCTION

Brain-computer interfaces (BCI) are systems that translate

the users intent, coded by a small set of mental tasks, into

control actions such as computer applications or prostheses

[1]–[4]. In order to translate the brain activity into com-

mands, it is necessary to extract meaningful features from

the acquired signals. One of the most popular tools to extract

information from the brain signals is the calculation of

common spatial filters (CSP) [5]. This data driven approach

optimizes spatial filters for each subject individually. CSP

analysis is embedded in machine learning methods. Over the

last years, machine learning has led to significant advances

in the analysis and modeling of neural signals. In EEG-BCI

experimentation, the time needed for user’s neurofeedback

training has been reduced from several days to just a couple

of sessions [6]. Typically, collecting examples of EEG signals

during which the user is cued to perform repeatedly a small

number of e.g. motor imagery tasks [7] is sufficient to adapt

the system to the subject and start the feedback. In this step

the users can actually transfer information through their brain

activity and control applications. However, there are several

aspects in which BCI research can profit from improvement,

see the ‘Challenges’ section of [8]. One of them is to gain

robustness against non task-related fluctuations and/or non-

stationarity of the measured EEG signals.

This work profits from the recent paper [9], in which a

maxmin approach to Fisher discriminant analysis (FDA) was

applied for robust classification. From their maxmin theorem,

the maxmin FDA is guaranteed to have higher discriminative

power for any fluctuations within a prefixed tolerance set.
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Inspired by that work, the present paper contributes by inves-

tigating such a maxmin approach to common spatial patterns

(CSP) [10]. However, in contrast to the FDA case [9], we

can obtain the worst case covariance matrices analytically,

and define a modified generalized eigenvalue problem.

II. THE ORIGINAL COMMON SPATIAL PATTERN

ALGORITHM

Many EEG-BCIs, are based on motor imagery. Commonly,

subjects using these systems are asked to perform the imag-

ination of hands, feet or mouth. Motor imagery alters the

rhythmic activity that can be measured in the EEG over

the sensorimotor cortex. Many EEG rhythms are called idle

rhythms because they are generated by large populations

of cortical neurons that fire in rhythmical synchrony when

they are not engaged in a specific task. Oscillations with a

fundamental frequency between 9 and 13 Hz can be observed

over motor and sensorimotor areas in most subjects (the µ-

rhythm). These sensorimotor rhythms (SMRs) are attenuated

in the corresponding cortical area when a motor task (e.g.

movement or motor imagery) takes place. As this effect

is due to loss of synchrony in the neural populations, it

is termed event-related desynchronization (ERD), see [11].

The increase of oscillatory EEG (i.e., the reestablishment of

neuronal synchrony) is called event-related synchronization

(ERS). To distinguish motor imagery tasks of different body

parts it is necessary to recognize different spatial localization

of SMR modulations. The locations over the sensorimotor

cortex are related to corresponding parts of the body. For

example, left and right hand are localized in the contralateral

hemisphere, i.e., right and left motor cortex, respectively.

Thus, spatial filters are an essential step for a meaningful

feature extraction and posterior classification of motor inten-

tions. One of the most popular and successful algorithms for

calculating spatial filters is CSP. Given two distributions in

a high-dimensional space (corresponding in our case to two

different mental tasks), the CSP algorithm finds directions

(i.e., spatial filters) that maximize variance for one class and

simultaneously minimize variance for the other class. Since

band-power is equivalent to the variance of band-pass filtered

signals, this criterion corresponds to ERD/ERS effects.

Mathematically CSP analysis works as follows. Let Σ+

and Σ− be covariance matrices of the band-pass filtered

EEG signals of two different motor imagery tasks. These

two matrices are simultaneously diagonalized such that the

eigenvalues of Σ+ and Σ− sum to 1. This can be done by

calculating the generalized eigenvectors W :

Σ+W = (Σ+ + Σ−)WD. (1)
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Here, the diagonal matrix D contains the (generalized)

eigenvalues of Σ+ (defined such that they are between 0
and 1) and the column vectors of W are the filters w’s

for computing the CSP features. The best discrimination is

provided by those filters with high eigenvalues (large vari-

ance for condition 1 and small variance for condition 2) and

by filters with low eigenvalues (vice versa). Therefore, the

common practice in a classification setting is to use several

eigenvectors from both ends of the eigenvalue spectrum as

features for classification. Alternatively, the solution for the

eigenvector with the largest eigenvalue can also be obtained

by maximizing the Rayleigh quotient:

maximize
w∈RC

w⊤Σ+w

w⊤(Σ+ + Σ−)w
. (2)

This correspondence is often useful for algorithmic consid-

erations.

III. COMMON SPATIAL PATTERN UNDER THE MAXMIN

APPROACH

The class covariance matrices Σ+ and Σ− used in CSP can

vary substantially because of non task-related fluctuations

and/or non-stationarity of the EEG signals. In BCI applica-

tions, it is thus important to make the features robust against

such changes. In those cases, the maxmin approach [9]

applied successfully to FDA could be one of the promising

directions to construct robust CSP filters. The key idea

is that, instead of just two single matrices, we consider

convex sets S+ and S− for the class covariances Σ+ and

Σ−, respectively. These sets specify the tolerance regions of

fluctuations around the class covariances. For simplicity, we

assume that the sets S+ and S− are independent of each

other. Based on the maxmin framework, robust CSP filters

can be constructed by maximizing the worst case (minimum)

Rayleigh quotient within all possible covariance matrices in

the tolerance regions. That is, the optimization problems for

our maxmin CSP can be expressed as

max
w 6=0

min
Σ+∈S+, Σ

−
∈S

−

w⊤Σ+w

w⊤ (Σ+ + Σ−) w
(3)

max
w 6=0

min
Σ+∈S+, Σ

−
∈S

−

w⊤Σ−w

w⊤ (Σ+ + Σ−) w
(4)

From now, we consider only the first optimization problem

(3), because the other (4) can be handled in the same way.

A. Derivation of the Maxmin Filters

We further assume that the sets S+ and S− can be defined

by balls in the space of C×C positive definite matrices (i.e.

Σ± � 0) centered at Σ+ and Σ−

S+ =
{

Σ+

∣

∣Σ+ � 0, ‖Σ+ − Σ+‖ ≤ δ+

}

,

S− =
{

Σ−
∣

∣Σ− � 0, ‖Σ− − Σ−‖ ≤ δ−
}

,
(5)

where ‖ · ‖ denotes an appropriate norm of the matrix space.

We used the average class covariances for the centers Σ+ and

Σ−. The following two norms are considered in this paper.

One is ‖X‖2
P := Tr

(

P−1XP−1X
)

for any symmetric

matrix X , where P is a C × C positive definite matrix

specifying the shape of the balls. When P = I , this boils

down to the standard ’Frobenius’ norm. The other takes into

account variability of covariance matrices over time through

PCA, which will be explained in the next section.

For the first choice, the worst-case covariances in the

tolerance sets can be determined explicitly, and therefore the

maxmin filter can be determined by a generalized eigenvalue

problem as the original CSP.

Lemma 1: For the sets S+ and S− defined in Eq. (5), the

worst case Rayleigh quotient becomes

w⊤
(

Σ+ − δ+√
C

P+

)

w

w⊤
(

Σ+ + Σ− − δ+√
C

P+ + δ
−√
C

P−

)

w
, ∀w, (6)

if Σ+ − δ+√
C

P+ � 0.

In our experiment, we take Frobenius norm, i.e. P+ =
P− = I (identity maxminCSP). Although the identity matrix

ignores plausible directions of fluctuation in EEG signals, the

maxmin CSP with this setting still improved the performance

in the “day-to-day” transfer experiment. We conjecture that

this is analogous to the fact that Bayesian regularization helps

even with non-informative priors. If we have extra (prior)

information about possible fluctuations as is the case with the

real world BCI data in [12], the covariance of the distortions

can be used for the matrices P+ and P−. This approach

was called invariant CSP (iCSP). Fig. 1 is an illustrative

explanation of our method. Although we develop the theory

only for the first eigenvectors, in the experiments we will

use a few eigenvectors each. Further work should be done

to extend Lemma 1 for multiple eigenvectors.

B. Alternative Maxmin Filters Depending on Actual Non-

stationarity

Although the maxmin CSP with the identity matrix im-

proved the original CSP in our experiments, the correspond-

ing tolerance sets do not well capture the actual variability

of the covariance matrices over time. Therefore, it is natural

to analyze their non-stationarity and to take such information

into account for calculating robust filters. In this paper, we

propose a variant of the maxmin CSP with matrix PCA.

The procedure consists of the following three steps: 1)

matrix PCA, 2) computing the worst case covariances and

3) derivation of the maxmin filters. We will explain step by

step.

Let {Σ
(k)
± }K

k=1 be sets of locally-averaged covariance ma-

trices in time, where in our experiment we will use trial-wise

covariances (without averaging), session-wise averages and

local averages within four blocks in each session. We would

like to fit the tolerance regions (the ellipsoids in Fig.1.(d)) so

that they match variability of the covariances {Σ
(k)
± }K

k=1. To

do so, we need to find directions of large fluctuation, which

can be done by PCA. At first, C×C matrices are transformed

to C2-dimensional vectors. Then, the covariance of the

extended vectors is calculated and its eigen decomposition

is obtained. Finally, the C2-dimensional eigenvectors are
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Fig. 1. Figs. (a), (b) and (c) represent Σ+ and Σ
−

at different time points. Mean of the features is 0, as it is bandpass filtered data. Fig. (d) represents the
previous matrices as points in the space of positive definite matrices. The ellipsoids in Fig. (d) are the tolerance sets S+ and S

−
centered at the average

matrices Σ+ and Σ
−

, respectively. From both ellipsoids, a pair of the worst case covariances is obtained for each optimization problem (3) or (4).

transformed back to C × C matrices. Suppose that λ
(i)
± and

V
(i)
± are eigenvalues and matrices by class-wise PCA. We

define the tolerance sets as

S± :=

{

Σ± = Σ± + ∆±

∣

∣

∣

∣

∣

∆± =
∑

i

α
(i)
± V

(i)
± ,

‖∆±‖PCA ≤ δ±

}

, (7)

where

‖∆±‖
2
PCA :=

∑

i

(

α
(i)
±

)2

λ
(i)
±

. (8)

This norm allows larger variations in the directions with large

eigenvalues. To avoid instability, we ignore small eigenvalues

in the following discussion. For a given w, the worst case

covariances in (3) can be obtained by optimizing

min
Σ+∈S+

w⊤Σ+w = min
α+

∑

i

α
(i)
+ w⊤V

(i)
+ w, (9)

max
Σ

−
∈S

−

w⊤Σ−w = max
α

−

∑

i

α
(i)
− w⊤V

(i)
− w, (10)

under constraints

∑

i

(

α
(i)
±

)2

λ
(i)
±

≤ δ2
±, (11)

Σ± +
∑

i

α
(i)
± V

(i)
± � 0. (12)

If we ignore the positive definiteness (12), the solutions can

be obtained analytically as

α
(i)
+ =

−δ+λiw
⊤V

(i)
+ w

√

∑

i λi

(

w⊤V
(i)
+ w

)2
, (13)

α
(i)
− =

δ−λiw
⊤V

(i)
− w

√

∑

i λi

(

w⊤V
(i)
− w

)2
, (14)

When Σ± +
∑

i α
(i)
± V

(i)
± violate (12), we truncate the nega-

tive eigenvalues of the worst case covariances to zeros. Once

the worst case covariances are obtained, we can update the

maxmin filters by CSP of these matrices. In contrast to the

previous case (6), we need to iterate the second and third

steps, since the worst case covariances depend on the current

filter w. However, as we will show in our experiment, only a

single update from the original CSP works fine in practice.

IV. RESULTS

In this paper we evaluate the proposed algorithm on

offline data in which substantial fluctuations are expected. In

particular, we test the algorithm for obtaining robust filters

against session-to-session (day-to-day) variability which may

be caused by different mental conditions, materials (cap and

electrodes) and different preparation of the measurement

devices. For the analysis, we use ‘calibration measurements’

in which no BCI feedback is provided to avoid bias toward

any method. The trials of the ‘calibration data’ have a fixed

length of 3.5 seconds in which an imagery motor task (right

or left hand or foot movement) is performed in response to

a visual cue (letter L, R, F). For the evaluation, we only

consider binary classification. The best pair of three motor

imaginary tasks, is selected based on separability for each

subject. The data is recorded using 48 Ag/AgCl electrodes
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Fig. 2. Test errors of the original CSP algorithm (orig CSP) and the
two maxmin versions, identity maxminCSP (id maxminCSP) and PCA
maxminCSP. The legend provides subject codes (two letter codes) and the
selected parameters in square brackets for the session-to-session transfer.

in an extended 10-20 system sampled at 1000 Hz with a

band-pass from 0.05 to 200 Hz. Linear discriminant analysis

(LDA) is used for classification and the performance is

measured by the error rate.

For the analysis, data from four subjects for whom we

recorded several sessions in different days (even with more

than 12 months difference) is used. For subject zq we use

6 available datasets, 5 datasets for cm and zp and finally 4

for subject zk. All files except one are used for training the

maxmin filters. The parameters of the model are selected by

cross-validating in the training set. The selected delta values

(see Sections III-A and III-B) are shown in Fig. 2. Matrices

P+ and P− are either the identity matrix (id maxminCSP, see

Section III-A) or a matrix selected using PCA (see Section

III-B). The last file is used to test the performance of each

subject. Fig. 2 shows the error rate when using the original

CSP, identity maxminCSP and PCA maxminCSP for pre-

processing the data. The identity maxminCSP outperforms

original CSP in 3 of 4 cases, whereas PCA maxminCSP

method outperforms identity maxminCSP and original CSP

in all subjects. The large error reduction of subject zk

implies that the covariances in the test session have similar

characteristics to the worst cases.

V. DISCUSSION AND CONCLUSION

BCI data is contaminated by a variety of noise sources,

artifacts, non-stationarities and outliers that make it indis-

pensable to strive for more robust learning methods. In

this paper we proposed a novel algorithm for robust spatial

filtering that is inspired by [9]. In particular, we analyze

the worst case performance among possible class covariance

matrices and optimize the respective CSP-like filters based

on such a criterion. We take balls or ellipsoids in the matrix

space for the sets of the covariances and the algorithm can

be elegantly reduced to a generalized eigenvalue problem

similar to the original CSP, but with modified covariance

matrices. The simulations presented in this paper show that

the maxminCSP framework is indeed more robust as it

allows transfer BCI classifier knowledge from session to

session. This permits to construct a BCI system that is more

stable with respect to non-stationarities and non-task related

fluctuations. In future studies we will continue working

towards more robust BCIs. One of our goals is to use the

ideas presented in this paper to define a non-parametric

variant of the problem and skip the model selection needed

until now.
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